FactQA: question answering over domain knowledge graph based on two-level query expansion

计算机科学 答疑 解析 情报检索 查询扩展 领域(数学分析) 领域知识 图形 知识图 匹配(统计) 同义词(分类学) 自然语言处理 人工智能 理论计算机科学 数学 统计 生物 数学分析 植物
作者
Xiaoming Zhang,Mingming Meng,Xiaoling Sun,Yu Bai
出处
期刊:Data technologies and applications [Emerald Publishing Limited]
卷期号:54 (1): 34-63 被引量:9
标识
DOI:10.1108/dta-02-2019-0029
摘要

Purpose With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the question answering (QA) research. However, the KG, which is always constituted of entities and relations, is structurally inconsistent with the natural language query. Thus, the QA system based on KG is still faced with difficulties. The purpose of this paper is to propose a method to answer the domain-specific questions based on KG, providing conveniences for the information query over domain KG. Design/methodology/approach The authors propose a method FactQA to answer the factual questions about specific domain. A series of logical rules are designed to transform the factual questions into the triples, in order to solve the structural inconsistency between the user’s question and the domain knowledge. Then, the query expansion strategies and filtering strategies are proposed from two levels (i.e. words and triples in the question). For matching the question with domain knowledge, not only the similarity values between the words in the question and the resources in the domain knowledge but also the tag information of these words is considered. And the tag information is obtained by parsing the question using Stanford CoreNLP. In this paper, the KG in metallic materials domain is used to illustrate the FactQA method. Findings The designed logical rules have time stability for transforming the factual questions into the triples. Additionally, after filtering the synonym expansion results of the words in the question, the expansion quality of the triple representation of the question is improved. The tag information of the words in the question is considered in the process of data matching, which could help to filter out the wrong matches. Originality/value Although the FactQA is proposed for domain-specific QA, it can also be applied to any other domain besides metallic materials domain. For a question that cannot be answered, FactQA would generate a new related question to answer, providing as much as possible the user with the information they probably need. The FactQA could facilitate the user’s information query based on the emerging KG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
花花发布了新的文献求助20
4秒前
4秒前
杨自强发布了新的文献求助10
4秒前
犬狗狗完成签到 ,获得积分10
4秒前
cc发布了新的文献求助10
5秒前
笨笨的绿真完成签到,获得积分10
6秒前
qitengzhu发布了新的文献求助10
7秒前
7秒前
小蘑菇应助王大炮采纳,获得10
8秒前
xuz发布了新的文献求助10
8秒前
WEN完成签到,获得积分20
8秒前
shinble发布了新的文献求助10
9秒前
9秒前
天天快乐应助D_D采纳,获得10
11秒前
11秒前
余三心发布了新的文献求助10
11秒前
旖旎完成签到 ,获得积分10
11秒前
剑指东方是为谁应助Xu采纳,获得10
12秒前
小溜溜完成签到,获得积分10
13秒前
小二郎应助yusuf采纳,获得10
13秒前
明亮随阴完成签到,获得积分10
14秒前
凉茶发布了新的文献求助10
14秒前
聪慧的怀绿完成签到,获得积分10
14秒前
小溜溜发布了新的文献求助30
16秒前
17秒前
赵焱峥完成签到,获得积分10
17秒前
xuz完成签到,获得积分20
20秒前
20秒前
Angie发布了新的文献求助30
20秒前
Osprey_Lee完成签到,获得积分10
20秒前
21秒前
疯狂的绮山完成签到,获得积分10
21秒前
Lucas应助沉静白翠采纳,获得10
23秒前
江峰发布了新的文献求助10
23秒前
柳代云完成签到,获得积分10
24秒前
25秒前
SciGPT应助浪者漫心采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761429
求助须知:如何正确求助?哪些是违规求助? 3305356
关于积分的说明 10133409
捐赠科研通 3019247
什么是DOI,文献DOI怎么找? 1658075
邀请新用户注册赠送积分活动 791820
科研通“疑难数据库(出版商)”最低求助积分说明 754655