Semi-supervised Classification on Data Streams with Recurring Concept Drift Based on Conformal Prediction

概念漂移 分类器(UML) 计算机科学 数据流 块(置换群论) 人工智能 模式识别(心理学) 标记数据 数据流挖掘 共形映射 数据挖掘 数学 电信 数学分析 几何学
作者
Songde Ma,Wei Kang,Yun Xue,Yonggang Wen
出处
期刊:Communications in computer and information science 卷期号:: 355-366
标识
DOI:10.1007/978-981-99-8184-7_27
摘要

In this article, we consider the problem of semi-supervised data stream classification. The main difficulties of data stream semi-supervised classification include how to jointly utilize labeled and unlabeled samples to adress concept drift detection and how to use unlabeled to update trained classifier. Existing algorithms like the CPSSDS method constantly retrain a new classifier when concept drift is detected, it is very consuming and wasteful. In this paper, the algorithm of data stream semi-supervised classification with recurring concept drift named as CPSSDS-R is proposed. First, the labeled samples in the first data block are used to initialize a classifier, which is added into a pool and actived for classification. While a new data block arrives, concept drift is detected by computing conformal prediction results. If no concept drift is detected, the pseudo-labeled samples in the previous data block are added with the labeled samples in the current data block to incrementally train the active classifier. If a new concept is detected, a new classifier is trained on the labeled samples of the current data block and added into the pool and actived for classification, else if a recurring concept is detected, the pseudo-labeled samples and labeled samples in the current data block are used to incrementally update the classifier corresponding to the recurring concept in the pool and actived for classification. The proposed algorithm is tested on multiple synthetic and real datasets, and its cumulative accuracy and block accuracy at different labeling ratios demonstrate the effectiveness of the proposed algorithm. The code for the proposed algorithm is available on https://gitee.com/ymw12345/cpssds-r .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffx完成签到,获得积分10
1秒前
mujianhua发布了新的文献求助10
1秒前
甜甜玫瑰应助积极松鼠采纳,获得10
3秒前
严惜发布了新的文献求助10
5秒前
希希发布了新的文献求助10
5秒前
小蘑菇应助月月鸟采纳,获得10
5秒前
大胆的渊思完成签到,获得积分10
6秒前
SciGPT应助墨墨采纳,获得10
6秒前
科目三应助LDY采纳,获得10
6秒前
fifteen发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
9秒前
9秒前
潇洒紫寒发布了新的文献求助10
10秒前
南区食堂不好吃完成签到,获得积分10
11秒前
11秒前
淡然发布了新的文献求助10
11秒前
pp完成签到 ,获得积分10
11秒前
zhangyafei发布了新的文献求助10
12秒前
Baoyuan_Zhu发布了新的文献求助10
12秒前
钱多多完成签到,获得积分10
12秒前
MoonFlows应助Aegean采纳,获得20
13秒前
13秒前
15秒前
Jessiez94完成签到,获得积分10
15秒前
豆子完成签到,获得积分10
15秒前
15秒前
咚咚蛋发布了新的文献求助10
16秒前
17秒前
甜甜圈完成签到,获得积分10
19秒前
钱多多发布了新的文献求助10
20秒前
CipherSage应助siyuwang1234采纳,获得10
21秒前
23秒前
雪中发布了新的文献求助10
23秒前
失眠的易梦应助林夕儿采纳,获得10
25秒前
25秒前
充电宝应助坚强的严青采纳,获得10
25秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943