细胞内
山梨醇
生物物理学
化学
细胞生物学
细胞外
生物
生物化学
作者
Stéphanie Torrino,William M. Oldham,Andrés R. Tejedor,Ignacio Sanchez‐Burgos,Nesrine Rachedi,Kéren Fraissard,Caroline Chauvet,Chaima Sbai,Brendan P. O’Hara,Sophie Abélanet,Frédéric Brau,Stéphan Clavel,Rosana Collepardo‐Guevara,Jorge R. Espinosa,Issam Ben‐Sahra,Thomas Bertero
标识
DOI:10.1101/2023.07.24.550444
摘要
Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI