Mechano-dependent sorbitol accumulation supports biomolecular condensate

细胞内 山梨醇 生物物理学 化学 细胞生物学 细胞外 生物 生物化学
作者
Stéphanie Torrino,William M. Oldham,Andrés R. Tejedor,Ignacio Sanchez‐Burgos,Nesrine Rachedi,Kéren Fraissard,Caroline Chauvet,Chaima Sbai,Brendan P. O’Hara,Sophie Abélanet,Frédéric Brau,Stéphan Clavel,Rosana Collepardo‐Guevara,Jorge R. Espinosa,Issam Ben‐Sahra,Thomas Bertero
标识
DOI:10.1101/2023.07.24.550444
摘要

Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅哥发布了新的文献求助10
刚刚
zjl1112发布了新的文献求助10
1秒前
1秒前
xue完成签到 ,获得积分10
1秒前
小灰灰完成签到 ,获得积分10
2秒前
RebeccaHe发布了新的文献求助10
4秒前
英姑应助李超采纳,获得10
4秒前
梅红完成签到,获得积分10
4秒前
曹先森发布了新的文献求助10
4秒前
隐形曼青应助明理觅儿采纳,获得10
4秒前
爆米花应助devil采纳,获得10
5秒前
852应助3333采纳,获得10
5秒前
5秒前
6秒前
xhaldlw完成签到,获得积分10
7秒前
orixero应助科研通管家采纳,获得30
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
积极慕梅应助科研通管家采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
不配.应助tccqq采纳,获得50
8秒前
科研通AI2S应助珊熙采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
9秒前
Ava应助小虫采纳,获得10
9秒前
zjl1112完成签到,获得积分10
9秒前
SciGPT应助云泥采纳,获得30
9秒前
jinni发布了新的文献求助10
9秒前
研友_Z33zkZ发布了新的文献求助10
9秒前
10秒前
大力完成签到,获得积分10
11秒前
zhenhong发布了新的文献求助10
11秒前
顾矜应助科研进化中采纳,获得10
11秒前
songxiaohong完成签到,获得积分10
11秒前
Jasper应助温柔映阳采纳,获得10
12秒前
风趣夜云发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685