Differentiation of Sinonasal NKT From Diffuse Large B-Cell Lymphoma Using Machine Learning and MRI-Based Radiomics

医学 磁共振成像 人工智能 接收机工作特性 淋巴瘤 特征选择 无线电技术 支持向量机 Lasso(编程语言) 放射科 机器学习 模式识别(心理学) 核医学 病理 计算机科学 万维网 内科学
作者
Yiyin Zhang,Naier Lin,Hanyu Xiao,Enhui Xin,Yan Sha
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (6): 973-981
标识
DOI:10.1097/rct.0000000000001497
摘要

The aim of this study was to construct and validate a noninvasive radiomics method based on magnetic resonance imaging to differentiate sinonasal extranodal natural killer/T-cell lymphoma from diffuse large B-cell lymphoma.We collected magnetic resonance imaging scans, including contrast-enhanced T1-weighted imaging and T2-weighted imaging, from 133 patients with non-Hodgkin lymphoma (103 sinonasal extranodal natural killer/T-cell lymphoma and 30 diffuse large B-cell lymphoma) and randomly split them into training and testing cohorts at a ratio of 7:3. Clinical characteristics and image performance were analyzed to build a logistic regression clinical-image model. The radiomics features were extracted on contrast-enhanced T1-weighted imaging and T2-weighted imaging images. Maximum relevance minimum redundancy, selectKbest, and the least absolute shrinkage and selection operator algorithms (LASSO) were applied for feature selection after balancing the training set. Five machine learning classifiers were used to construct the single and combined sequences radiomics models. Sensitivity, specificity, accuracy, precision, F1score, the area under receiver operating characteristic curve, and the area under precision-recall curve were compared between the 15 models and the clinical-image model. The diagnostic results of the best model were compared with those of 2 radiologists.The combined sequence model using support vector machine proves to be the best, incorporating 7 features and providing the highest values of specificity (0.903), accuracy (0.900), precision (0.727), F1score (0.800), and area under precision-recall curve (0.919) with relatively high sensitivity (0.889) in the testing set, along with a minimum Brier score. The diagnostic results differed significantly ( P < 0.05) from those of radiology residents, but not significantly ( P > 0.05) from those of experienced radiologists.Magnetic resonance imaging based on machine learning and radiomics to identify the type of sinonasal non-Hodgkin lymphoma is effective and has the potential to help radiology residents for diagnosis and be a supplement for biopsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
2秒前
Hanoi347应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
niceLDD应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
小不点应助科研通管家采纳,获得10
3秒前
niceLDD应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得20
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
niceLDD应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
小不点应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
科研通AI6应助sssshhh采纳,获得10
4秒前
wqty完成签到 ,获得积分10
6秒前
万能图书馆应助NEW采纳,获得10
7秒前
9秒前
脑洞疼应助科研顺采纳,获得10
10秒前
xkk完成签到,获得积分10
10秒前
10秒前
思源应助唠叨的觅海采纳,获得10
11秒前
共享精神应助gong采纳,获得10
13秒前
有魅力的含海完成签到,获得积分10
13秒前
lyh发布了新的文献求助10
16秒前
16秒前
wqty关注了科研通微信公众号
16秒前
18秒前
大豹子发布了新的文献求助150
20秒前
CodeCraft应助wangdong采纳,获得10
21秒前
疯狂加载ing完成签到,获得积分0
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619