Differentiation of Sinonasal NKT From Diffuse Large B-Cell Lymphoma Using Machine Learning and MRI-Based Radiomics

医学 磁共振成像 人工智能 接收机工作特性 淋巴瘤 特征选择 无线电技术 支持向量机 Lasso(编程语言) 放射科 机器学习 模式识别(心理学) 核医学 病理 计算机科学 万维网 内科学
作者
Yiyin Zhang,Naier Lin,Hanyu Xiao,Enhui Xin,Yan Sha
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (6): 973-981
标识
DOI:10.1097/rct.0000000000001497
摘要

The aim of this study was to construct and validate a noninvasive radiomics method based on magnetic resonance imaging to differentiate sinonasal extranodal natural killer/T-cell lymphoma from diffuse large B-cell lymphoma.We collected magnetic resonance imaging scans, including contrast-enhanced T1-weighted imaging and T2-weighted imaging, from 133 patients with non-Hodgkin lymphoma (103 sinonasal extranodal natural killer/T-cell lymphoma and 30 diffuse large B-cell lymphoma) and randomly split them into training and testing cohorts at a ratio of 7:3. Clinical characteristics and image performance were analyzed to build a logistic regression clinical-image model. The radiomics features were extracted on contrast-enhanced T1-weighted imaging and T2-weighted imaging images. Maximum relevance minimum redundancy, selectKbest, and the least absolute shrinkage and selection operator algorithms (LASSO) were applied for feature selection after balancing the training set. Five machine learning classifiers were used to construct the single and combined sequences radiomics models. Sensitivity, specificity, accuracy, precision, F1score, the area under receiver operating characteristic curve, and the area under precision-recall curve were compared between the 15 models and the clinical-image model. The diagnostic results of the best model were compared with those of 2 radiologists.The combined sequence model using support vector machine proves to be the best, incorporating 7 features and providing the highest values of specificity (0.903), accuracy (0.900), precision (0.727), F1score (0.800), and area under precision-recall curve (0.919) with relatively high sensitivity (0.889) in the testing set, along with a minimum Brier score. The diagnostic results differed significantly ( P < 0.05) from those of radiology residents, but not significantly ( P > 0.05) from those of experienced radiologists.Magnetic resonance imaging based on machine learning and radiomics to identify the type of sinonasal non-Hodgkin lymphoma is effective and has the potential to help radiology residents for diagnosis and be a supplement for biopsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxl发布了新的文献求助10
2秒前
完美焦完成签到,获得积分10
3秒前
3秒前
惠老师发布了新的文献求助10
4秒前
英俊的铭应助作业对不起采纳,获得10
8秒前
蒲云海发布了新的文献求助10
9秒前
yxl完成签到,获得积分10
11秒前
领导范儿应助陈寯采纳,获得50
14秒前
独特的姝发布了新的文献求助10
14秒前
orixero应助不信人间有白头采纳,获得10
14秒前
Cyyy完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
肖不错完成签到 ,获得积分10
19秒前
张楚岚完成签到,获得积分10
19秒前
晴空万里完成签到 ,获得积分10
20秒前
20秒前
li完成签到 ,获得积分10
21秒前
lkl发布了新的文献求助10
22秒前
橙子爱吃火龙果完成签到 ,获得积分10
23秒前
logan完成签到,获得积分0
23秒前
兔子完成签到 ,获得积分10
24秒前
独特的姝完成签到,获得积分10
25秒前
digiwood完成签到,获得积分10
26秒前
我是老大应助淡然的翠风采纳,获得10
26秒前
Rrr发布了新的文献求助10
26秒前
小白完成签到 ,获得积分10
27秒前
六月初八夜完成签到,获得积分10
27秒前
28秒前
大模型应助lkl采纳,获得10
28秒前
谢小盟应助苗苗会喵喵采纳,获得10
29秒前
能干的新筠完成签到,获得积分10
29秒前
1851611453完成签到 ,获得积分10
29秒前
32秒前
yznfly应助江大橘采纳,获得10
32秒前
34秒前
35秒前
桃博完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助30
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861