已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differentiation of Sinonasal NKT From Diffuse Large B-Cell Lymphoma Using Machine Learning and MRI-Based Radiomics

医学 磁共振成像 人工智能 接收机工作特性 淋巴瘤 特征选择 无线电技术 支持向量机 Lasso(编程语言) 放射科 机器学习 模式识别(心理学) 核医学 病理 计算机科学 内科学 万维网
作者
Yiyin Zhang,Naier Lin,Hanyu Xiao,Enhui Xin,Yan Sha
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (6): 973-981
标识
DOI:10.1097/rct.0000000000001497
摘要

The aim of this study was to construct and validate a noninvasive radiomics method based on magnetic resonance imaging to differentiate sinonasal extranodal natural killer/T-cell lymphoma from diffuse large B-cell lymphoma.We collected magnetic resonance imaging scans, including contrast-enhanced T1-weighted imaging and T2-weighted imaging, from 133 patients with non-Hodgkin lymphoma (103 sinonasal extranodal natural killer/T-cell lymphoma and 30 diffuse large B-cell lymphoma) and randomly split them into training and testing cohorts at a ratio of 7:3. Clinical characteristics and image performance were analyzed to build a logistic regression clinical-image model. The radiomics features were extracted on contrast-enhanced T1-weighted imaging and T2-weighted imaging images. Maximum relevance minimum redundancy, selectKbest, and the least absolute shrinkage and selection operator algorithms (LASSO) were applied for feature selection after balancing the training set. Five machine learning classifiers were used to construct the single and combined sequences radiomics models. Sensitivity, specificity, accuracy, precision, F1score, the area under receiver operating characteristic curve, and the area under precision-recall curve were compared between the 15 models and the clinical-image model. The diagnostic results of the best model were compared with those of 2 radiologists.The combined sequence model using support vector machine proves to be the best, incorporating 7 features and providing the highest values of specificity (0.903), accuracy (0.900), precision (0.727), F1score (0.800), and area under precision-recall curve (0.919) with relatively high sensitivity (0.889) in the testing set, along with a minimum Brier score. The diagnostic results differed significantly ( P < 0.05) from those of radiology residents, but not significantly ( P > 0.05) from those of experienced radiologists.Magnetic resonance imaging based on machine learning and radiomics to identify the type of sinonasal non-Hodgkin lymphoma is effective and has the potential to help radiology residents for diagnosis and be a supplement for biopsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助莫言采纳,获得10
刚刚
3秒前
科目三应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
希望天下0贩的0应助迷途采纳,获得10
6秒前
打打应助董竹君采纳,获得10
7秒前
hh完成签到 ,获得积分10
8秒前
9秒前
9秒前
CodeCraft应助荞麦面采纳,获得10
9秒前
11秒前
千柳发布了新的文献求助20
11秒前
12秒前
犹豫忆南完成签到,获得积分10
13秒前
hh关注了科研通微信公众号
13秒前
13秒前
团子发布了新的文献求助10
14秒前
17秒前
酥酥0o发布了新的文献求助10
17秒前
17秒前
善学以致用应助略略略采纳,获得10
18秒前
忧郁的寻冬完成签到,获得积分10
19秒前
扶苏完成签到,获得积分10
19秒前
20秒前
搞点学术发布了新的文献求助10
20秒前
荞麦面发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
25秒前
千柳发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146409
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825638
捐赠科研通 2454147
什么是DOI,文献DOI怎么找? 1306157
科研通“疑难数据库(出版商)”最低求助积分说明 627642
版权声明 601503