Differentiation of Sinonasal NKT From Diffuse Large B-Cell Lymphoma Using Machine Learning and MRI-Based Radiomics

医学 磁共振成像 人工智能 接收机工作特性 淋巴瘤 特征选择 无线电技术 支持向量机 Lasso(编程语言) 放射科 机器学习 模式识别(心理学) 核医学 病理 计算机科学 万维网 内科学
作者
Yiyin Zhang,Naier Lin,Hanyu Xiao,Enhui Xin,Yan Sha
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (6): 973-981
标识
DOI:10.1097/rct.0000000000001497
摘要

The aim of this study was to construct and validate a noninvasive radiomics method based on magnetic resonance imaging to differentiate sinonasal extranodal natural killer/T-cell lymphoma from diffuse large B-cell lymphoma.We collected magnetic resonance imaging scans, including contrast-enhanced T1-weighted imaging and T2-weighted imaging, from 133 patients with non-Hodgkin lymphoma (103 sinonasal extranodal natural killer/T-cell lymphoma and 30 diffuse large B-cell lymphoma) and randomly split them into training and testing cohorts at a ratio of 7:3. Clinical characteristics and image performance were analyzed to build a logistic regression clinical-image model. The radiomics features were extracted on contrast-enhanced T1-weighted imaging and T2-weighted imaging images. Maximum relevance minimum redundancy, selectKbest, and the least absolute shrinkage and selection operator algorithms (LASSO) were applied for feature selection after balancing the training set. Five machine learning classifiers were used to construct the single and combined sequences radiomics models. Sensitivity, specificity, accuracy, precision, F1score, the area under receiver operating characteristic curve, and the area under precision-recall curve were compared between the 15 models and the clinical-image model. The diagnostic results of the best model were compared with those of 2 radiologists.The combined sequence model using support vector machine proves to be the best, incorporating 7 features and providing the highest values of specificity (0.903), accuracy (0.900), precision (0.727), F1score (0.800), and area under precision-recall curve (0.919) with relatively high sensitivity (0.889) in the testing set, along with a minimum Brier score. The diagnostic results differed significantly ( P < 0.05) from those of radiology residents, but not significantly ( P > 0.05) from those of experienced radiologists.Magnetic resonance imaging based on machine learning and radiomics to identify the type of sinonasal non-Hodgkin lymphoma is effective and has the potential to help radiology residents for diagnosis and be a supplement for biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赛因斯完成签到,获得积分10
刚刚
xxz完成签到,获得积分10
1秒前
wenhao完成签到,获得积分10
1秒前
852应助kiki采纳,获得10
4秒前
温暖砖头完成签到,获得积分10
4秒前
长情尔曼完成签到,获得积分10
4秒前
searchforpaper完成签到 ,获得积分10
4秒前
5秒前
现实的面包完成签到,获得积分10
7秒前
serpant完成签到,获得积分10
7秒前
7秒前
SYLH应助长情尔曼采纳,获得10
8秒前
9秒前
谦让文昊完成签到,获得积分10
9秒前
樱桃小贩完成签到,获得积分10
9秒前
收声发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
凉的白开完成签到,获得积分10
12秒前
zhang发布了新的文献求助10
14秒前
李响发布了新的文献求助10
14秒前
NexusExplorer应助美少女壮士采纳,获得10
16秒前
her发布了新的文献求助10
16秒前
科研通AI2S应助LUK_采纳,获得10
17秒前
袅_完成签到,获得积分10
19秒前
陶醉的莫茗完成签到,获得积分10
20秒前
20秒前
我是老大应助果实采纳,获得10
20秒前
Let It Be完成签到,获得积分10
20秒前
高高的丹雪完成签到 ,获得积分10
20秒前
mylaodao完成签到,获得积分0
22秒前
23秒前
甜甜圈完成签到 ,获得积分10
23秒前
shidewu完成签到,获得积分10
23秒前
大福完成签到,获得积分0
23秒前
24秒前
24秒前
hqq发布了新的文献求助10
27秒前
kiki发布了新的文献求助10
27秒前
whisper完成签到,获得积分10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150