Differentiation of Sinonasal NKT From Diffuse Large B-Cell Lymphoma Using Machine Learning and MRI-Based Radiomics

医学 磁共振成像 人工智能 接收机工作特性 淋巴瘤 特征选择 无线电技术 支持向量机 Lasso(编程语言) 放射科 机器学习 模式识别(心理学) 核医学 病理 计算机科学 内科学 万维网
作者
Yiyin Zhang,Naier Lin,Hanyu Xiao,Enhui Xin,Yan Sha
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (6): 973-981
标识
DOI:10.1097/rct.0000000000001497
摘要

The aim of this study was to construct and validate a noninvasive radiomics method based on magnetic resonance imaging to differentiate sinonasal extranodal natural killer/T-cell lymphoma from diffuse large B-cell lymphoma.We collected magnetic resonance imaging scans, including contrast-enhanced T1-weighted imaging and T2-weighted imaging, from 133 patients with non-Hodgkin lymphoma (103 sinonasal extranodal natural killer/T-cell lymphoma and 30 diffuse large B-cell lymphoma) and randomly split them into training and testing cohorts at a ratio of 7:3. Clinical characteristics and image performance were analyzed to build a logistic regression clinical-image model. The radiomics features were extracted on contrast-enhanced T1-weighted imaging and T2-weighted imaging images. Maximum relevance minimum redundancy, selectKbest, and the least absolute shrinkage and selection operator algorithms (LASSO) were applied for feature selection after balancing the training set. Five machine learning classifiers were used to construct the single and combined sequences radiomics models. Sensitivity, specificity, accuracy, precision, F1score, the area under receiver operating characteristic curve, and the area under precision-recall curve were compared between the 15 models and the clinical-image model. The diagnostic results of the best model were compared with those of 2 radiologists.The combined sequence model using support vector machine proves to be the best, incorporating 7 features and providing the highest values of specificity (0.903), accuracy (0.900), precision (0.727), F1score (0.800), and area under precision-recall curve (0.919) with relatively high sensitivity (0.889) in the testing set, along with a minimum Brier score. The diagnostic results differed significantly ( P < 0.05) from those of radiology residents, but not significantly ( P > 0.05) from those of experienced radiologists.Magnetic resonance imaging based on machine learning and radiomics to identify the type of sinonasal non-Hodgkin lymphoma is effective and has the potential to help radiology residents for diagnosis and be a supplement for biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉飞瑶关注了科研通微信公众号
刚刚
量子星尘发布了新的文献求助10
1秒前
加菲丰丰举报求助违规成功
2秒前
Koalas举报求助违规成功
2秒前
哈基米德举报求助违规成功
2秒前
2秒前
3秒前
3秒前
脑洞疼应助精明向梦采纳,获得10
4秒前
XUXU发布了新的文献求助10
4秒前
曾经的听云完成签到 ,获得积分10
5秒前
风清扬发布了新的文献求助10
6秒前
6秒前
Hysen_L发布了新的文献求助10
6秒前
huangchenxi完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
加菲丰丰举报求助违规成功
9秒前
Koalas举报求助违规成功
9秒前
blue举报求助违规成功
9秒前
9秒前
风白发布了新的文献求助10
9秒前
11秒前
shubo发布了新的文献求助10
11秒前
14秒前
xiaoxin发布了新的文献求助10
15秒前
15秒前
迷失沉寂完成签到,获得积分10
15秒前
Hysen_L完成签到,获得积分10
16秒前
加菲丰丰举报求助违规成功
16秒前
Koalas举报求助违规成功
16秒前
谢小盟举报求助违规成功
16秒前
16秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
Candy2024完成签到 ,获得积分10
18秒前
隐形曼青应助光而不耀采纳,获得30
18秒前
mlp完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062203
求助须知:如何正确求助?哪些是违规求助? 4285998
关于积分的说明 13356150
捐赠科研通 4103881
什么是DOI,文献DOI怎么找? 2247103
邀请新用户注册赠送积分活动 1252721
关于科研通互助平台的介绍 1183649