爆炸物
反向传播
起爆
计算机科学
人工神经网络
超压
培训(气象学)
多层感知器
算法
机器学习
模式识别(心理学)
人工智能
数据挖掘
气象学
物理
有机化学
化学
热力学
作者
Muhamad Hadzren Mat,Prakash Nagappan,Syahrull Hi-Fi Syam Ahmad Jamil,Fakroul Ridzuan Hashim,Khairol Amali Bin Ahmad,Khurram Kamal
标识
DOI:10.1109/iccsce58721.2023.10237166
摘要
The blast wave profile produced by detonations has long been the subject of research. The propagation profile of blast waves can be predicted given certain parameters after significant experimentation. However, prior research has mostly concentrated on the center of initiation for spherical explosive forms. This study compares the accuracy of blast peak overpressure predictions according to the kind, shape, and location of the explosive detonation. The experiment required creating a prediction model using a Multilayer Perceptron (MLP) network and detonating 500 grammes of Plastic Explosive 4 (PE-4) and Emulex at various ranges (from 0.5 m to 4.0 m) to do this. When modelling the prediction of explosive blasts using Tansig and Logsig training algorithms, Lavenberg Marquardt (LM) training method outperforms Backpropagation (BP). The MSE and regression scores of 1.1348 and 0.9512, respectively, using the LM training algorithm show the best performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI