纳米棒
表面等离子共振
检出限
细胞毒性
姜黄素
DNA
化学
纳米技术
选择性
组合化学
材料科学
色谱法
体外
纳米颗粒
生物化学
催化作用
作者
Sanyukta Mayuri,Niki S. Jha,Shailendra K. Jha
标识
DOI:10.1016/j.ijbiomac.2023.126829
摘要
We are reporting curcumin-induced gold nanorods as an optical sensing platform for the detection of sequence-specific DNA target through their self-assembly. The combined effect of eco-friendly reducing agent (i.e., curcumin) and silver nitrate in a basic medium (i.e., pH 10) has been attributed for the formation of small gold nanorods (AuNRs) having approximate length and diameter i.e., 19.7 ± 0.8 nm and 6.0 ± 0.5 nm, respectively, and lower longitudinal surface plasmon resonance (SPR) enable to detect and analyse different biomarkers. Further, for evaluating cellular uptake of as-synthesized AuNRs, the cytotoxicity study has been carried out by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on A549 cells and HEPG2 cell lines, respectively, and shown approximately similar cytotoxicity. Interestingly, as-synthesized optically and electronically active AuNRs based nanobiosensing platform enable to detect sequence-specific DNA targets with low level of detection limit i.e., LOD 8.6 ± 0.15 pM for complimentary target (CT) DNA with higher sensitivity and better selectivity. Finally, this study is suggesting a simplistic bio-mediated approach of tuning the shape and size of AuNRs for sensitive, selective and reliable nanobiosensing platform for sequence-specific DNA detection related to cancer cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI