清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analyzing 20 years of Resting-State fMRI Research: Trends and collaborative networks revealed

神经影像学 静息状态功能磁共振成像 功能连接 功能磁共振成像 心理学 默认模式网络 神经科学 认知心理学
作者
Wenzhuo Wei,Kaiyuan Zhang,Jin Woo Chang,Shuyu Zhang,Lijun Ma,Huixue Wang,Mi Zhang,Zhenyue Zu,Linxi Yang,Fenglan Chen,Chuan Fan,Xiaoming Li
出处
期刊:Brain Research [Elsevier BV]
卷期号:1822: 148634-148634 被引量:6
标识
DOI:10.1016/j.brainres.2023.148634
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI), initially proposed by Biswal et al. in 1995, has emerged as a pivotal facet of neuroimaging research. Its ability to examine brain activity during the resting state without the need for explicit tasks or stimuli has made it an integral component of brain imaging studies. In recent years, rs-fMRI has witnessed substantial growth and found widespread application in the investigation of functional connectivity within the brain. To delineate the developmental trajectory of rs-fMRI over the past two decades, we conducted a comprehensive analysis using bibliometric tool Citespace. Our analysis encompassed publication trends, authorship networks, institutional affiliations, international collaborations, as well as emergent themes in references and keywords. Our study reveals a remarkable increase in the volume of rs-fMRI publications over the past two decades, underscoring the burgeoning interest and potential within this field. Harvard University stands out as the institution with the highest number of research papers published in the realm of RS-fMRI, while the United States holds the highest overall influence in this domain. The recent emergence of keywords such as "machine learning" and "default mode," coupled with citation surges in reference to rs-fMRI, have paved new avenues for research within this field. Our study underscores the critical importance of integrating machine learning techniques into rs-fMRI investigations, offering valuable insights into brain function and disease diagnosis. These findings hold profound significance for the field of neuroscience and may furnish insights for future research employing rs-fMRI as a diagnostic tool for a wide array of neurological disorders, thus emphasizing its pivotal role and potential as a tool for investigating brain functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴完成签到 ,获得积分10
2秒前
11秒前
合不着完成签到 ,获得积分10
15秒前
寻找组织完成签到,获得积分10
21秒前
21秒前
蓝意完成签到,获得积分0
26秒前
六一儿童节完成签到 ,获得积分0
36秒前
夜倾心完成签到,获得积分10
1分钟前
活力初蝶完成签到,获得积分20
1分钟前
Qing完成签到 ,获得积分10
1分钟前
1分钟前
zzgpku完成签到,获得积分0
1分钟前
活力初蝶发布了新的文献求助10
1分钟前
Tong完成签到,获得积分0
1分钟前
jlwang完成签到,获得积分10
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
李6666完成签到 ,获得积分10
2分钟前
Yini应助科研通管家采纳,获得30
2分钟前
智者雨人完成签到 ,获得积分10
2分钟前
丢星完成签到 ,获得积分10
2分钟前
111完成签到 ,获得积分10
2分钟前
SC完成签到 ,获得积分10
2分钟前
2分钟前
彭于晏应助幻影采纳,获得10
3分钟前
3分钟前
3分钟前
HYQ发布了新的文献求助10
3分钟前
幻影发布了新的文献求助10
3分钟前
大大的呢完成签到,获得积分10
3分钟前
3分钟前
真的OK完成签到,获得积分10
3分钟前
yzz完成签到,获得积分10
3分钟前
qq完成签到,获得积分10
3分钟前
清水完成签到,获得积分10
3分钟前
ys1008完成签到,获得积分10
3分钟前
啪嗒大白球完成签到,获得积分10
3分钟前
美满惜寒完成签到,获得积分10
3分钟前
喜喜完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066100
求助须知:如何正确求助?哪些是违规求助? 4288401
关于积分的说明 13359928
捐赠科研通 4107373
什么是DOI,文献DOI怎么找? 2249202
邀请新用户注册赠送积分活动 1254678
关于科研通互助平台的介绍 1186720