Analyzing 20 years of Resting-State fMRI Research: Trends and collaborative networks revealed

神经影像学 静息状态功能磁共振成像 功能连接 功能磁共振成像 心理学 默认模式网络 神经科学 认知心理学
作者
Wenzhuo Wei,Kaiyuan Zhang,Jin Woo Chang,Shuyu Zhang,Lijun Ma,Huixue Wang,Mi Zhang,Zhenyue Zu,Linxi Yang,Fenglan Chen,Chuan Fan,Xiaoming Li
出处
期刊:Brain Research [Elsevier]
卷期号:1822: 148634-148634 被引量:6
标识
DOI:10.1016/j.brainres.2023.148634
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI), initially proposed by Biswal et al. in 1995, has emerged as a pivotal facet of neuroimaging research. Its ability to examine brain activity during the resting state without the need for explicit tasks or stimuli has made it an integral component of brain imaging studies. In recent years, rs-fMRI has witnessed substantial growth and found widespread application in the investigation of functional connectivity within the brain. To delineate the developmental trajectory of rs-fMRI over the past two decades, we conducted a comprehensive analysis using bibliometric tool Citespace. Our analysis encompassed publication trends, authorship networks, institutional affiliations, international collaborations, as well as emergent themes in references and keywords. Our study reveals a remarkable increase in the volume of rs-fMRI publications over the past two decades, underscoring the burgeoning interest and potential within this field. Harvard University stands out as the institution with the highest number of research papers published in the realm of RS-fMRI, while the United States holds the highest overall influence in this domain. The recent emergence of keywords such as "machine learning" and "default mode," coupled with citation surges in reference to rs-fMRI, have paved new avenues for research within this field. Our study underscores the critical importance of integrating machine learning techniques into rs-fMRI investigations, offering valuable insights into brain function and disease diagnosis. These findings hold profound significance for the field of neuroscience and may furnish insights for future research employing rs-fMRI as a diagnostic tool for a wide array of neurological disorders, thus emphasizing its pivotal role and potential as a tool for investigating brain functionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻冰棍发布了新的文献求助10
1秒前
BowieHuang应助白白采纳,获得10
1秒前
mirrovo完成签到 ,获得积分10
1秒前
自然的平蓝完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Linos应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
爆米花应助1816013153采纳,获得30
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研菜j应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
Duke_ethan完成签到,获得积分10
10秒前
Arslan完成签到,获得积分20
13秒前
SUN完成签到,获得积分10
16秒前
闪闪航空完成签到,获得积分10
16秒前
22秒前
科研通AI2S应助好好哒采纳,获得20
25秒前
科研通AI6应助sssshhh采纳,获得10
25秒前
25秒前
26秒前
30秒前
sevenhill应助Xjx6519采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614