亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analyzing 20 years of Resting-State fMRI Research: Trends and collaborative networks revealed

神经影像学 静息状态功能磁共振成像 功能连接 功能磁共振成像 心理学 默认模式网络 神经科学 认知心理学
作者
Wenzhuo Wei,Kaiyuan Zhang,Jin Woo Chang,Shuyu Zhang,Lijun Ma,Huixue Wang,Mi Zhang,Zhenyue Zu,Linxi Yang,Fenglan Chen,Chuan Fan,Xiaoming Li
出处
期刊:Brain Research [Elsevier]
卷期号:1822: 148634-148634 被引量:6
标识
DOI:10.1016/j.brainres.2023.148634
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI), initially proposed by Biswal et al. in 1995, has emerged as a pivotal facet of neuroimaging research. Its ability to examine brain activity during the resting state without the need for explicit tasks or stimuli has made it an integral component of brain imaging studies. In recent years, rs-fMRI has witnessed substantial growth and found widespread application in the investigation of functional connectivity within the brain. To delineate the developmental trajectory of rs-fMRI over the past two decades, we conducted a comprehensive analysis using bibliometric tool Citespace. Our analysis encompassed publication trends, authorship networks, institutional affiliations, international collaborations, as well as emergent themes in references and keywords. Our study reveals a remarkable increase in the volume of rs-fMRI publications over the past two decades, underscoring the burgeoning interest and potential within this field. Harvard University stands out as the institution with the highest number of research papers published in the realm of RS-fMRI, while the United States holds the highest overall influence in this domain. The recent emergence of keywords such as "machine learning" and "default mode," coupled with citation surges in reference to rs-fMRI, have paved new avenues for research within this field. Our study underscores the critical importance of integrating machine learning techniques into rs-fMRI investigations, offering valuable insights into brain function and disease diagnosis. These findings hold profound significance for the field of neuroscience and may furnish insights for future research employing rs-fMRI as a diagnostic tool for a wide array of neurological disorders, thus emphasizing its pivotal role and potential as a tool for investigating brain functionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
桐桐应助喝可乐也很好采纳,获得20
6秒前
君兰完成签到,获得积分10
7秒前
8秒前
10秒前
slby完成签到 ,获得积分10
11秒前
君兰发布了新的文献求助10
13秒前
友好碧完成签到 ,获得积分10
15秒前
乐观的月亮完成签到,获得积分10
20秒前
20秒前
zhuxiaoyue发布了新的文献求助10
20秒前
打打应助辉辉采纳,获得10
20秒前
美美完成签到,获得积分20
22秒前
25秒前
27秒前
29秒前
BeanHahn发布了新的文献求助10
29秒前
30秒前
阿离完成签到,获得积分10
31秒前
33秒前
无题完成签到,获得积分10
33秒前
辉辉发布了新的文献求助10
34秒前
36秒前
37秒前
39秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
小蘑菇应助科研通管家采纳,获得10
40秒前
41秒前
42秒前
chenyue233完成签到,获得积分10
42秒前
specium发布了新的文献求助10
44秒前
chenyue233发布了新的文献求助10
48秒前
大个应助ECD采纳,获得10
49秒前
50秒前
55秒前
BeanHahn完成签到,获得积分10
58秒前
_u_ii发布了新的文献求助10
59秒前
辉辉完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671