EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation

计算机科学 工作流程 软件 资源配置 分布式计算 定向进化 Python(编程语言) 并行计算 计算 资源(消歧) 操作系统 化学 算法 数据库 计算机网络 突变体 生物化学 基因
作者
Qianzhen Shao,Yaoyukun Jiang,Zhongyue Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (17): 5650-5659 被引量:9
标识
DOI:10.1021/acs.jcim.3c00618
摘要

Directed evolution facilitates enzyme engineering via iterative rounds of mutagenesis. Despite the wide applications of high-throughput screening, building "smart libraries" to effectively identify beneficial variants remains a major challenge in the community. Here, we developed a new computational directed evolution protocol based on EnzyHTP, a software that we have previously reported to automate enzyme modeling. To enhance the throughput efficiency, we implemented an adaptive resource allocation strategy that dynamically allocates different types of computing resources (e.g., GPU/CPU) based on the specific need of an enzyme modeling subtask in the workflow. We implemented the strategy as a Python library and tested the library using fluoroacetate dehalogenase as a model enzyme. The results show that compared to fixed resource allocation where both CPU and GPU are on-call for use during the entire workflow, applying adaptive resource allocation can save 87% CPU hours and 14% GPU hours. Furthermore, we constructed a computational directed evolution protocol under the framework of adaptive resource allocation. The workflow was tested against two rounds of mutational screening in the directed evolution experiments of Kemp eliminase (KE07) with a total of 184 mutants. Using folding stability and electrostatic stabilization energy as computational readout, we identified all four experimentally observed target variants. Enabled by the workflow, the entire computation task (i.e., 18.4 μs MD and 18,400 QM single-point calculations) completes in 3 days of wall-clock time using ∼30 GPUs and ∼1000 CPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的荷花完成签到,获得积分10
刚刚
刚刚
123发布了新的文献求助10
刚刚
1秒前
俭朴的明轩完成签到,获得积分20
1秒前
张童鞋完成签到 ,获得积分10
1秒前
1秒前
1秒前
Autoimmune发布了新的文献求助10
1秒前
帅气惜霜发布了新的文献求助10
2秒前
苏照杭应助Ll采纳,获得10
2秒前
LL完成签到 ,获得积分10
3秒前
后青春期的痘完成签到,获得积分10
3秒前
sun完成签到 ,获得积分10
4秒前
jiang完成签到 ,获得积分10
5秒前
5秒前
苏卿应助郑开司09采纳,获得10
5秒前
湖月照我影完成签到 ,获得积分10
5秒前
Orange应助龙歪歪采纳,获得10
5秒前
Jack发布了新的文献求助10
5秒前
6秒前
JACK发布了新的文献求助10
6秒前
卿欣完成签到 ,获得积分10
7秒前
莉莉发布了新的文献求助10
7秒前
红烧茄子完成签到,获得积分10
7秒前
默默柚子完成签到,获得积分10
7秒前
nini完成签到 ,获得积分10
7秒前
陶醉海露完成签到,获得积分10
8秒前
8秒前
苗槐完成签到,获得积分10
8秒前
阳光的沉鱼完成签到,获得积分10
8秒前
大模型应助白华苍松采纳,获得10
9秒前
zyp应助火焰向上采纳,获得10
9秒前
9秒前
123456完成签到,获得积分10
9秒前
深情安青应助半颗橙子采纳,获得10
9秒前
CodeCraft应助123采纳,获得10
10秒前
隐形曼青应助心花怒放采纳,获得10
10秒前
酷酷的如天完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762