EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation

计算机科学 工作流程 软件 资源配置 分布式计算 定向进化 Python(编程语言) 并行计算 计算 资源(消歧) 操作系统 化学 算法 数据库 计算机网络 突变体 生物化学 基因
作者
Qianzhen Shao,Yaoyukun Jiang,Zhongyue Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (17): 5650-5659 被引量:9
标识
DOI:10.1021/acs.jcim.3c00618
摘要

Directed evolution facilitates enzyme engineering via iterative rounds of mutagenesis. Despite the wide applications of high-throughput screening, building "smart libraries" to effectively identify beneficial variants remains a major challenge in the community. Here, we developed a new computational directed evolution protocol based on EnzyHTP, a software that we have previously reported to automate enzyme modeling. To enhance the throughput efficiency, we implemented an adaptive resource allocation strategy that dynamically allocates different types of computing resources (e.g., GPU/CPU) based on the specific need of an enzyme modeling subtask in the workflow. We implemented the strategy as a Python library and tested the library using fluoroacetate dehalogenase as a model enzyme. The results show that compared to fixed resource allocation where both CPU and GPU are on-call for use during the entire workflow, applying adaptive resource allocation can save 87% CPU hours and 14% GPU hours. Furthermore, we constructed a computational directed evolution protocol under the framework of adaptive resource allocation. The workflow was tested against two rounds of mutational screening in the directed evolution experiments of Kemp eliminase (KE07) with a total of 184 mutants. Using folding stability and electrostatic stabilization energy as computational readout, we identified all four experimentally observed target variants. Enabled by the workflow, the entire computation task (i.e., 18.4 μs MD and 18,400 QM single-point calculations) completes in 3 days of wall-clock time using ∼30 GPUs and ∼1000 CPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
pppsy完成签到,获得积分10
5秒前
简化为完成签到,获得积分10
6秒前
爱科研的罗罗完成签到,获得积分10
6秒前
Rondab应助mini采纳,获得10
6秒前
hhhhhhhh完成签到,获得积分20
6秒前
7秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
8秒前
hhhhhhhh发布了新的文献求助10
10秒前
10秒前
10秒前
逢场作戱__完成签到 ,获得积分10
11秒前
Bio应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
heyihao应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得30
11秒前
深情安青应助糕糕采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
Bio应助科研通管家采纳,获得30
12秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
挖掘机应助科研通管家采纳,获得200
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
夕诙应助科研通管家采纳,获得20
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
Liufgui应助科研通管家采纳,获得30
13秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
打打应助科研通管家采纳,获得10
13秒前
heyihao应助科研通管家采纳,获得30
13秒前
彭于彦祖应助科研通管家采纳,获得30
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070