EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation

计算机科学 工作流程 软件 资源配置 分布式计算 定向进化 Python(编程语言) 并行计算 计算 资源(消歧) 操作系统 化学 算法 数据库 计算机网络 突变体 基因 生物化学
作者
Qianzhen Shao,Yaoyukun Jiang,Zhongyue Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (17): 5650-5659 被引量:9
标识
DOI:10.1021/acs.jcim.3c00618
摘要

Directed evolution facilitates enzyme engineering via iterative rounds of mutagenesis. Despite the wide applications of high-throughput screening, building "smart libraries" to effectively identify beneficial variants remains a major challenge in the community. Here, we developed a new computational directed evolution protocol based on EnzyHTP, a software that we have previously reported to automate enzyme modeling. To enhance the throughput efficiency, we implemented an adaptive resource allocation strategy that dynamically allocates different types of computing resources (e.g., GPU/CPU) based on the specific need of an enzyme modeling subtask in the workflow. We implemented the strategy as a Python library and tested the library using fluoroacetate dehalogenase as a model enzyme. The results show that compared to fixed resource allocation where both CPU and GPU are on-call for use during the entire workflow, applying adaptive resource allocation can save 87% CPU hours and 14% GPU hours. Furthermore, we constructed a computational directed evolution protocol under the framework of adaptive resource allocation. The workflow was tested against two rounds of mutational screening in the directed evolution experiments of Kemp eliminase (KE07) with a total of 184 mutants. Using folding stability and electrostatic stabilization energy as computational readout, we identified all four experimentally observed target variants. Enabled by the workflow, the entire computation task (i.e., 18.4 μs MD and 18,400 QM single-point calculations) completes in 3 days of wall-clock time using ∼30 GPUs and ∼1000 CPUs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助哈哈哈采纳,获得10
刚刚
Owen应助哈哈哈采纳,获得10
刚刚
迅速的代桃完成签到,获得积分10
刚刚
无极微光应助哈哈哈采纳,获得20
刚刚
Evelyn_ding完成签到,获得积分10
刚刚
chruse发布了新的文献求助10
刚刚
1秒前
JiangSir完成签到,获得积分10
1秒前
阿龙发布了新的文献求助10
1秒前
Aiden完成签到,获得积分10
1秒前
Xiaosi完成签到,获得积分10
1秒前
san完成签到,获得积分10
1秒前
一只生物狗完成签到,获得积分10
1秒前
piaopiao1122发布了新的文献求助10
2秒前
2秒前
2秒前
善学以致用应助夏儿采纳,获得10
2秒前
FashionBoy应助拿破仑的鱼采纳,获得10
3秒前
3秒前
迷失浪人发布了新的文献求助10
3秒前
liang发布了新的文献求助10
5秒前
唐新惠完成签到 ,获得积分10
5秒前
5秒前
xiaofu完成签到,获得积分20
5秒前
XQJ完成签到,获得积分10
5秒前
和谐的敏完成签到,获得积分10
5秒前
wuludie应助天真紫伊采纳,获得20
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Cheney完成签到,获得积分10
7秒前
猫小咪发布了新的文献求助10
7秒前
Moriarty完成签到,获得积分10
7秒前
坚强的芸遥完成签到,获得积分10
7秒前
王晓茜完成签到,获得积分20
8秒前
未道发布了新的文献求助10
8秒前
8秒前
完美麦片完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197