孟德尔随机化
DNA甲基化
表观遗传学
全基因组关联研究
表观基因组
计算生物学
遗传关联
生物
表达数量性状基因座
生物信息学
甲基化
遗传学
单核苷酸多态性
基因
基因表达
基因型
遗传变异
作者
Aierpati Maimaiti,Mirzat Turhon,Aimitaji Abulaiti,Yilidanna Dilixiati,Fujunhui Zhang,Aximujiang Axieer,Kaheerman Kadeer,Yisen Zhang,Aisha Maimaitili,Xinjian Yang
标识
DOI:10.1186/s12967-023-04512-w
摘要
Abstract Background Intracranial aneurysms (IAs) pose a significant and intricate challenge. Elucidating the interplay between DNA methylation and IA pathogenesis is paramount to identify potential biomarkers and therapeutic interventions. Methods We employed a comprehensive bioinformatics investigation of DNA methylation in IA, utilizing a transcriptomics-based methodology that encompassed 100 machine learning algorithms, genome-wide association studies (GWAS), Mendelian randomization (MR), and summary-data-based Mendelian randomization (SMR). Our sophisticated analytical strategy allowed for a systematic assessment of differentially methylated genes and their implications on the onset, progression, and rupture of IA. Results We identified DNA methylation-related genes (MRGs) and associated molecular pathways, and the MR and SMR analyses provided evidence for potential causal links between the observed DNA methylation events and IA predisposition. Conclusion These insights not only augment our understanding of the molecular underpinnings of IA but also underscore potential novel biomarkers and therapeutic avenues. Although our study faces inherent limitations and hurdles, it represents a groundbreaking initiative in deciphering the intricate relationship between genetic, epigenetic, and environmental factors implicated in IA pathogenesis. Graphical Abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI