神经发生
上睑下垂
海马结构
神经科学
海马体
小胶质细胞
脑源性神经营养因子
医学
神经营养因子
心理学
炎症体
内科学
炎症
受体
作者
Tongzhou Qin,Ling T. Guo,Xing Wang,Guiqiang Zhou,Liyuan Liu,Zhao-Wen Zhang,Guirong Ding
标识
DOI:10.1186/s12964-024-01591-0
摘要
Abstract Background Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. Methods RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. Results rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1β were upregulated. Conclusion Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI