Machine learning reveals differential effects of depression and anxiety on reward and punishment processing

惩罚(心理学) 焦虑 心理学 萧条(经济学) 价(化学) 临床心理学 大脑活动与冥想 抑郁症状 脑电图 精神科 发展心理学 量子力学 物理 宏观经济学 经济
作者
Anna Grabowska,Jakub Zabielski,Magdalena Senderecka
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-58031-9
摘要

Recent studies suggest that depression and anxiety are associated with unique aspects of EEG responses to reward and punishment, respectively; also, abnormal responses to punishment in depressed individuals are related to anxiety, the symptoms of which are comorbid with depression. In a non-clinical sample, we aimed to investigate the relationships between reward processing and anxiety, between punishment processing and anxiety, between reward processing and depression, and between punishment processing and depression. Towards this aim, we separated feedback-related brain activity into delta and theta bands to isolate activity that indexes functionally distinct processes. Based on the delta/theta frequency and feedback valence, we then used machine learning (ML) to classify individuals with high severity of depressive symptoms and individuals with high severity of anxiety symptoms versus controls. The significant difference between the depression and control groups was driven mainly by delta activity; there were no differences between reward- and punishment-theta activities. The high severity of anxiety symptoms was marginally more strongly associated with the punishment- than the reward-theta feedback processing. The findings provide new insights into the differences in the impacts of anxiety and depression on reward and punishment processing; our study shows the utility of ML in testing brain-behavior hypotheses and emphasizes the joint effect of theta-RewP/FRN and delta frequency on feedback-related brain activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文迪完成签到,获得积分10
1秒前
1秒前
田様应助有你采纳,获得10
2秒前
3秒前
爱笑梦易完成签到,获得积分10
5秒前
5秒前
6秒前
领导范儿应助赫连紫采纳,获得10
6秒前
学术蝗虫发布了新的文献求助10
7秒前
山河与海发布了新的文献求助10
9秒前
11秒前
rnf完成签到,获得积分10
13秒前
14秒前
小马想毕业完成签到,获得积分10
15秒前
大个应助学术蝗虫采纳,获得10
16秒前
16秒前
CC发布了新的文献求助10
18秒前
寂寞小笼包完成签到 ,获得积分10
18秒前
7777777完成签到,获得积分10
20秒前
溪与芮行完成签到 ,获得积分10
21秒前
大模型应助wangjiahui采纳,获得10
21秒前
安静的晓灵关注了科研通微信公众号
22秒前
22秒前
rnf完成签到,获得积分10
22秒前
英姑应助Lan采纳,获得10
22秒前
23秒前
小二郎应助a龙采纳,获得10
24秒前
白路完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
大个应助个性的冰夏采纳,获得30
28秒前
Owen应助天使在云端采纳,获得10
28秒前
pzhxsy发布了新的文献求助10
29秒前
蔬菜狗狗发布了新的文献求助10
29秒前
x1nger完成签到,获得积分10
30秒前
有你发布了新的文献求助10
30秒前
31秒前
33秒前
CDQ发布了新的文献求助10
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123018
求助须知:如何正确求助?哪些是违规求助? 2773507
关于积分的说明 7718023
捐赠科研通 2429087
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220