Machine learning reveals differential effects of depression and anxiety on reward and punishment processing

惩罚(心理学) 焦虑 心理学 萧条(经济学) 价(化学) 临床心理学 大脑活动与冥想 抑郁症状 脑电图 精神科 发展心理学 物理 经济 宏观经济学 量子力学
作者
Anna Grabowska,Jakub Zabielski,Magdalena Senderecka
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-58031-9
摘要

Recent studies suggest that depression and anxiety are associated with unique aspects of EEG responses to reward and punishment, respectively; also, abnormal responses to punishment in depressed individuals are related to anxiety, the symptoms of which are comorbid with depression. In a non-clinical sample, we aimed to investigate the relationships between reward processing and anxiety, between punishment processing and anxiety, between reward processing and depression, and between punishment processing and depression. Towards this aim, we separated feedback-related brain activity into delta and theta bands to isolate activity that indexes functionally distinct processes. Based on the delta/theta frequency and feedback valence, we then used machine learning (ML) to classify individuals with high severity of depressive symptoms and individuals with high severity of anxiety symptoms versus controls. The significant difference between the depression and control groups was driven mainly by delta activity; there were no differences between reward- and punishment-theta activities. The high severity of anxiety symptoms was marginally more strongly associated with the punishment- than the reward-theta feedback processing. The findings provide new insights into the differences in the impacts of anxiety and depression on reward and punishment processing; our study shows the utility of ML in testing brain-behavior hypotheses and emphasizes the joint effect of theta-RewP/FRN and delta frequency on feedback-related brain activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
库外发布了新的文献求助10
3秒前
汉堡包应助清新的冷松采纳,获得10
3秒前
从心应助LiShin采纳,获得10
3秒前
帅气的听莲完成签到,获得积分10
3秒前
英姑应助Areslcy采纳,获得10
3秒前
善学以致用应助zxz采纳,获得10
4秒前
whatever应助luoshi采纳,获得10
5秒前
5秒前
科研通AI5应助徐徐采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
6秒前
Lucas应助MADKAI采纳,获得10
6秒前
Vii应助MADKAI采纳,获得10
6秒前
李爱国应助MADKAI采纳,获得10
6秒前
李健应助MADKAI采纳,获得10
6秒前
烟花应助MADKAI采纳,获得20
6秒前
香蕉觅云应助MADKAI采纳,获得10
6秒前
科研通AI2S应助MADKAI采纳,获得10
6秒前
Singularity应助MADKAI采纳,获得10
6秒前
7秒前
7秒前
赘婿应助GGZ采纳,获得10
7秒前
阿盛完成签到,获得积分10
7秒前
7秒前
怕孤单的含羞草完成签到 ,获得积分10
8秒前
Muuu发布了新的文献求助10
8秒前
仁爱的乐枫完成签到,获得积分10
9秒前
9秒前
金润完成签到,获得积分10
10秒前
ZZ完成签到,获得积分10
10秒前
AteeqBaloch发布了新的文献求助10
11秒前
PaulLao完成签到,获得积分10
11秒前
11秒前
fleee发布了新的文献求助10
11秒前
11秒前
12秒前
Luyao发布了新的文献求助10
12秒前
海派Hi完成签到 ,获得积分10
12秒前
依依完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762