Best Subset Solution Path for Linear Dimension Reduction Models using Continuous Optimization

维数(图论) 还原(数学) 路径(计算) 降维 数学 数学优化 应用数学 算法 计算机科学 组合数学 人工智能 几何学 程序设计语言
作者
Benoît Liquet,Sarat Moka,Samuel Müller
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.20007
摘要

The selection of best variables is a challenging problem in supervised and unsupervised learning, especially in high dimensional contexts where the number of variables is usually much larger than the number of observations. In this paper, we focus on two multivariate statistical methods: principal components analysis and partial least squares. Both approaches are popular linear dimension-reduction methods with numerous applications in several fields including in genomics, biology, environmental science, and engineering. In particular, these approaches build principal components, new variables that are combinations of all the original variables. A main drawback of principal components is the difficulty to interpret them when the number of variables is large. To define principal components from the most relevant variables, we propose to cast the best subset solution path method into principal component analysis and partial least square frameworks. We offer a new alternative by exploiting a continuous optimization algorithm for best subset solution path. Empirical studies show the efficacy of our approach for providing the best subset solution path. The usage of our algorithm is further exposed through the analysis of two real datasets. The first dataset is analyzed using the principle component analysis while the analysis of the second dataset is based on partial least square framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉觅夏发布了新的文献求助10
刚刚
YuanbinMao应助weiweiwei采纳,获得10
刚刚
健忘小霜发布了新的文献求助10
1秒前
珑仔完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
科目三应助科研通管家采纳,获得10
4秒前
汀烟应助科研通管家采纳,获得10
4秒前
jevon应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
搬运工应助科研通管家采纳,获得10
4秒前
汀烟应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
飞先生发布了新的文献求助10
4秒前
ding应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
weiwei应助科研通管家采纳,获得10
5秒前
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
5秒前
BA1完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
7秒前
7秒前
chengtao发布了新的文献求助10
7秒前
溪风完成签到,获得积分10
8秒前
在水一方应助aniu采纳,获得10
8秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ACUTE EFFECTS OF MYOFASCIAL RELEASE TECHNIQUE ON FLEXIBILITY AND PAIN: OUTCOME FOR CHRONIC LOW BACK PAIN 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227308
求助须知:如何正确求助?哪些是违规求助? 2875428
关于积分的说明 8190783
捐赠科研通 2542679
什么是DOI,文献DOI怎么找? 1372868
科研通“疑难数据库(出版商)”最低求助积分说明 646596
邀请新用户注册赠送积分活动 621017