Micromechanics-based constitutive modeling of hard-magnetic soft materials

微观力学 超弹性材料 材料科学 弹性体 变形(气象学) 本构方程 固体力学 机械 材料性能 介观物理学 复合材料 有限元法 结构工程 物理 工程类 凝聚态物理 复合数
作者
P. Ramesh Narayanan,R. Pramanik,A. Arockiarajan
出处
期刊:Mechanics of Materials [Elsevier]
卷期号:184: 104722-104722 被引量:3
标识
DOI:10.1016/j.mechmat.2023.104722
摘要

Soft materials exhibit large deformation material nonlinearity when stretched and possess enhanced elongation-at-break strain prior to rupture. As a result, these materials can cater to several state-of-the-art biomedical and microfluidic applications that require cross-domain energy transduction. Furthermore, they are often impregnated with external multi-functional filler materials (e.g., hard-magnetic particles) to result in hard-magnetic soft materials (hMSM). This gives rise to an inherent complexity owing to the multi-physics coupling due to magnetics and solid dynamics (along with geometric and material nonlinearities), which demands a rigorous magneto-mechanical model for a thorough understanding of their large deformation mechanical behavior under magneto-mechanical loads. It is also mandatory to understand their rate-dependent, hyperelastic, and flow behavior that is omnipresent during their deformation process. This paper focuses on the development of a novel thermodynamically-consistent micromechanics-based constitutive model that incorporates all these attributes using the finite deformation theory. A statistical mechanics-based approach has been undertaken to model the mechanics of the elastomer matrix. The plastic behavior due to the elastomer and the dispersed magnetic phases has been further accounted using a double-yield function with a micromechanical approach. The developed model shows a good agreement for a wide range of hMSM subjected to a variety of complex loading conditions. Finally, a parametric study has been carried out to provide physical insights into the different model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDTT完成签到,获得积分10
1秒前
霸气的念云完成签到,获得积分10
1秒前
Orange应助欢呼小蚂蚁采纳,获得10
1秒前
1秒前
SQ完成签到,获得积分10
2秒前
2秒前
飞跃海龙完成签到 ,获得积分10
2秒前
ufuon发布了新的文献求助10
3秒前
momo完成签到,获得积分10
4秒前
赘婿应助二二二采纳,获得10
4秒前
JamesPei应助HongJiang采纳,获得10
4秒前
clarkq完成签到,获得积分10
5秒前
orixero应助LIU采纳,获得10
5秒前
经法发布了新的文献求助10
5秒前
不吃橘子完成签到,获得积分10
5秒前
Cheryy完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
ding应助哈哈哈哈采纳,获得10
7秒前
Draeck发布了新的文献求助10
7秒前
kingwhitewing发布了新的文献求助10
7秒前
8秒前
clarkq发布了新的文献求助10
8秒前
8秒前
GGZ完成签到,获得积分10
8秒前
15860936613完成签到 ,获得积分10
8秒前
可爱的函函应助a方舟采纳,获得10
8秒前
9秒前
ee关闭了ee文献求助
9秒前
9秒前
10秒前
Hungrylunch给woshiwuziq的求助进行了留言
10秒前
传奇3应助cruise采纳,获得10
10秒前
艺玲发布了新的文献求助10
10秒前
10秒前
我是老大应助sun采纳,获得10
11秒前
柔弱煎饼完成签到,获得积分10
11秒前
SY发布了新的文献求助10
11秒前
暗能量完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678