Machine Learning Assisted Discovery of Efficient MOFs for One-Step C2H4 Purification from Ternary C2H2/C2H4/C2H6 Mixtures

三元运算 材料科学 结晶学 计算机科学 化学 程序设计语言
作者
Tongan Yan,Zhengqing Zhang,Chongli Zhong
出处
期刊:Journal of Chemical & Engineering Data [American Chemical Society]
标识
DOI:10.1021/acs.jced.4c00244
摘要

Purifying C2H4 from a mixture of C2H2/C2H4/C2H6 using a single adsorbent is crucial industrially. Yet, the challenge lies in their similar physicochemical properties, leading to low separation efficiency. Additionally, the lack of understanding regarding the structure–performance relationships hinders the development of high-performance metal–organic frameworks (MOFs). In this study, machine learning assisted high-throughput molecular simulation methods are employed to discover efficient MOFs for one-step C2H4 purification. The general material design strategies were proposed based on the analysis of 14,142 CoRE MOF simulation data. These include locking open metal sites, ensuring relative mass proportion of H atoms in the range of 2–4%, optimizing the largest cavity diameter to span 5–7 Å (ultramicropore), and fine-tuning φ within 0.5–0.6. Further using the computational insights obtained, 10 materials were identified with both C2H2/C2H4 and C2H6/C2H4 selectivities exceeding 3 from 137,953 hypothetical MOFs and 303,991 generated MOFs through additional molecular simulations. Our study not only provides screened and designed potential candidates for efficient one-step C2H4 purification from ternary C2H2/C2H4/C2H6 mixtures but also provides useful information for further performance improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助娜行采纳,获得10
1秒前
李健的小迷弟应助cxw采纳,获得10
1秒前
jane完成签到 ,获得积分10
2秒前
顾矜应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
ding应助科研通管家采纳,获得10
4秒前
fansuerte应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
louise应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
乐乐应助徐冉采纳,获得10
5秒前
双楠应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
思源应助fagfagsf采纳,获得10
5秒前
在水一方应助123456采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
Akim应助嘟嘟嘟嘟嘟采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
搜集达人应助专注的鬼神采纳,获得10
6秒前
6秒前
wang完成签到,获得积分10
7秒前
科研通AI5应助勤劳太阳采纳,获得10
7秒前
小油条发布了新的文献求助10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669311
求助须知:如何正确求助?哪些是违规求助? 3227061
关于积分的说明 9773233
捐赠科研通 2937056
什么是DOI,文献DOI怎么找? 1609104
邀请新用户注册赠送积分活动 760109
科研通“疑难数据库(出版商)”最低求助积分说明 735748