The contribution of silencer variants to human diseases.

消音器 生物 候选基因 全基因组关联研究 遗传学 单核苷酸多态性 SNP公司 增强子 计算生物学 遗传关联 基因座(遗传学) 基因 基因型 转录因子 机械工程 工程类 入口
作者
Di Huang,Ivan Ovcharenko
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.05.17.24307558
摘要

Although disease-causal genetic variants have been found within silencer sequences, we still lack a comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and developmental time points, using deep learning models. We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson's-disease-hallmark genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than enhancers displaying an overall 2-fold enrichment in silencers versus enhancers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be attributed to variants within candidate silencers. Our model permits a mechanistic explanation of causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson's disease, rs2535629 in schizophrenia, and rs6207121 in Type 1 diabetes. In summary, our results indicate that advances in deep learning models for discovery of disease-causal variants within candidate silencers effectively 'double' the number of functionally characterized GWAS variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZXX发布了新的文献求助10
1秒前
沉默是金12完成签到 ,获得积分10
1秒前
kurumi完成签到,获得积分10
2秒前
a_hu发布了新的文献求助10
2秒前
神祇完成签到,获得积分20
3秒前
灰灰发布了新的文献求助10
3秒前
淡紫浅蓝完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助osh111采纳,获得10
5秒前
大英留子千早爱音完成签到,获得积分10
5秒前
5秒前
碰杯养生茶完成签到 ,获得积分10
6秒前
wynn完成签到,获得积分10
6秒前
所所应助QQ采纳,获得10
7秒前
ZZDXXX发布了新的文献求助10
8秒前
爆米花应助porkpork采纳,获得10
9秒前
神祇发布了新的文献求助10
10秒前
Lucas应助BUZZ采纳,获得10
11秒前
CipherSage应助灰灰采纳,获得10
11秒前
L.L完成签到,获得积分10
12秒前
舒心雪冥发布了新的文献求助10
12秒前
16秒前
豆子完成签到,获得积分20
16秒前
baitaowl完成签到 ,获得积分10
16秒前
科研通AI2S应助寂寞酷鑫采纳,获得10
17秒前
17秒前
刘丽梅完成签到 ,获得积分10
18秒前
小蘑菇应助专注的豪采纳,获得10
18秒前
18秒前
21秒前
所所应助舒心雪冥采纳,获得10
21秒前
酒仙发布了新的文献求助10
21秒前
orixero应助爱听歌的青筠采纳,获得10
23秒前
25秒前
Owen应助jinyi采纳,获得10
25秒前
BUZZ发布了新的文献求助10
26秒前
卡卡发布了新的文献求助10
27秒前
科研通AI5应助沉静的雁菡采纳,获得10
28秒前
boltos发布了新的文献求助10
28秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978