作者
Xudong Zhang,Dongwen Wu,Lukai Zhang,Hongyan Zhang,Liping Yang,Wei Li,Huimin Mei,Liying Luo,Jiang Zong,Cong Huang
摘要
Radix Chimonanthi Pracecocis(RCP), also known as Tiekuaizi, widely used by the Miao community in Guizhou, exhibits diverse biological activities and holds promise for the treatment of osteoarthritis (OA). However, there is a lack of contemporary pharmacological research in this area. This study aims to explore the potential of targets and mechanisms of RCP in the treatment of OA. The chemical components of RCP were identified using UPLC-MS/MS, and active components were determined based on the Lipinski rule. RCP and OA-related targets were retrieved from public databases such as TCMSP and GeneCards. Network pharmacology approaches were employed to identify key genes. The limma package (version 3.40.2) in R 4.3.2 was used to screen for differentially expressed genes (DEGs) between OA and healthy individuals in GSE82107. DEGs were analyzed using an independent sample t-test and receiver operating characteristic analysis in GraphPad Prism 9.5.1. Additionally, molecular docking (SYBYL2.1.1) was used to analyze the binding interactions between the active components and target proteins. Finally, we established a papain-induced osteoarthritis (OA) rat model and treated it with RCP aqueous extract by gavage. We validated relevant indicators using real-time fluorescence quantitative polymerase chain reaction, western blot, immunohistochemistry, and enzyme-linked immunosorbent assays. Seven active components and 53 targets were identified. The results of GO and KEGG enrichment analyses confirmed the significant role of RCP in the regulation of pyroptosis. Hypoxia-inducible factor-1α (HIF-1α) was identified as a key gene involved in the main biological functions. Molecular docking analysis revealed that Praecoxin, Isofraxidin, Esculin, and Naringenin can bind to the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) (T-Score > 5). Additionally, Praecoxin can bind to HIF-1α (T-Score > 5). In vivo experiments demonstrated that RCP significantly affects the NLRP3 inflammasome, which is regulated by the HIF-1α pathway. RCP inhibited pyroptosis and reduced synovial inflammation. This study confirmed the efficacy of RCP aqueous extract in the treatment of OA and identified seven active components (esculin, dihydrokaempferol, naringenin, praecoxin, carnosol, hydroxyvalerenic acid, isofraxidin) that may play an anti-pyroptosis role in the treatment of OA by downregulating the expression of HIF-1α and NLRP3 inflammasome.