SurvivalCNN: A deep learning-based method for gastric cancer survival prediction using radiological imaging data and clinicopathological variables

人工智能 计算机科学 卷积神经网络 深度学习 机器学习 医学影像学 模式识别(心理学)
作者
Degan Hao,Qiong Li,Qiu-Xia Feng,Liang Qi,Xi-Sheng Liu,Dooman Arefan,Yu‐Dong Zhang,Shandong Wu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:134: 102424-102424 被引量:15
标识
DOI:10.1016/j.artmed.2022.102424
摘要

Radiological images have shown promising effects in patient prognostication. Deep learning provides a powerful approach for in-depth analysis of imaging data and integration of multi-modal data for modeling. In this work, we propose SurvivalCNN, a deep learning structure for cancer patient survival prediction using CT imaging data and non-imaging clinical data. In SurvivalCNN, a supervised convolutional neural network is designed to extract volumetric image features, and radiomics features are also integrated to provide potentially different imaging information. Within SurvivalCNN, a novel multi-thread multi-layer perceptron module, namely, SurvivalMLP, is proposed to perform survival prediction from censored survival data. We evaluate the proposed SurvivalCNN framework on a large clinical dataset of 1061 gastric cancer patients for both overall survival (OS) and progression-free survival (PFS) prediction. We compare SurvivalCNN to three different modeling methods and examine the effects of various sets of data/features when used individually or in combination. With five-fold cross validation, our experimental results show that SurvivalCNN achieves averaged concordance index 0.849 and 0.783 for predicting OS and PFS, respectively, outperforming the compared state-of-the-art methods and the clinical model. After future validation, the proposed SurvivalCNN model may serve as a clinical tool to improve gastric cancer patient survival estimation and prognosis analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
huiyang sha完成签到,获得积分10
3秒前
罗白翠发布了新的文献求助10
3秒前
卯一发布了新的文献求助30
4秒前
vali完成签到,获得积分10
4秒前
刘少山发布了新的文献求助10
5秒前
5秒前
5秒前
8秒前
华仔应助居选金采纳,获得10
9秒前
风清扬发布了新的文献求助10
11秒前
十一发布了新的文献求助10
11秒前
12秒前
12秒前
平淡的天宇给福崽的求助进行了留言
13秒前
希望天下0贩的0应助Alan采纳,获得10
13秒前
sa完成签到,获得积分10
14秒前
四月77发布了新的文献求助10
14秒前
罗白翠完成签到,获得积分10
16秒前
是鑫鑫发布了新的文献求助20
18秒前
心有猛虎发布了新的文献求助10
18秒前
19秒前
sa发布了新的文献求助10
19秒前
21秒前
十一完成签到,获得积分10
21秒前
26秒前
26秒前
27秒前
所所应助Zhukic采纳,获得10
27秒前
27秒前
科研通AI2S应助博修采纳,获得10
27秒前
drfwjuikesv完成签到,获得积分10
27秒前
29秒前
霸气南珍发布了新的文献求助10
29秒前
29秒前
NexusExplorer应助Yh采纳,获得10
30秒前
FAN发布了新的文献求助10
32秒前
CAOHOU应助幽默泥猴桃采纳,获得10
32秒前
33秒前
追风完成签到,获得积分10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962835
求助须知:如何正确求助?哪些是违规求助? 3508752
关于积分的说明 11142844
捐赠科研通 3241587
什么是DOI,文献DOI怎么找? 1791624
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803540