亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 几何学 语言学 哲学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
8秒前
10秒前
23秒前
高铭泽发布了新的文献求助10
26秒前
脑洞疼应助吃死你啦啦采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
33秒前
离雨发布了新的文献求助10
36秒前
甜蜜的鸽子完成签到,获得积分10
37秒前
41秒前
Jasper应助WWW采纳,获得10
44秒前
无骨鸡爪不长胖完成签到,获得积分10
45秒前
51秒前
55秒前
阿俊完成签到 ,获得积分10
56秒前
无限火龙果完成签到,获得积分10
58秒前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
1分钟前
哈皮波完成签到,获得积分10
1分钟前
xm完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
无语的诗柳完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
云晓完成签到,获得积分10
1分钟前
荔枝发布了新的文献求助10
1分钟前
唐艺昕发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jes完成签到,获得积分10
1分钟前
天天天晴完成签到 ,获得积分10
2分钟前
ding应助爱科研的小凡采纳,获得10
2分钟前
2分钟前
Jasper应助vincen91采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407723
求助须知:如何正确求助?哪些是违规求助? 4525246
关于积分的说明 14101484
捐赠科研通 4439051
什么是DOI,文献DOI怎么找? 2436578
邀请新用户注册赠送积分活动 1428544
关于科研通互助平台的介绍 1406621