已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 语言学 哲学 几何学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿饼完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
丘比特应助LiuShenglan采纳,获得10
4秒前
6秒前
8秒前
8秒前
shhoing应助晴空万里采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
shime完成签到,获得积分10
11秒前
11秒前
11秒前
123发布了新的文献求助10
12秒前
12秒前
123完成签到,获得积分10
12秒前
13秒前
13秒前
晓婷婷发布了新的文献求助10
14秒前
若ruofeng发布了新的文献求助100
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
不懈奋进应助科研通管家采纳,获得30
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得12
15秒前
16秒前
冷酷愚志完成签到,获得积分10
16秒前
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
科研通AI5应助乐观的非笑采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153