清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 语言学 哲学 几何学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vinh完成签到,获得积分10
1秒前
liu95完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
大熊完成签到 ,获得积分10
3分钟前
三跳完成签到 ,获得积分10
3分钟前
WZM完成签到 ,获得积分10
4分钟前
bwx完成签到,获得积分10
4分钟前
joe完成签到 ,获得积分0
5分钟前
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
有人应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
phz发布了新的文献求助20
6分钟前
aaliyah完成签到 ,获得积分10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
有人应助科研通管家采纳,获得10
7分钟前
7分钟前
郜南烟发布了新的文献求助10
8分钟前
英姑应助郜南烟采纳,获得10
8分钟前
欣喜的人龙完成签到 ,获得积分10
8分钟前
Bella完成签到 ,获得积分10
9分钟前
zzhui完成签到,获得积分10
9分钟前
纪外绣完成签到,获得积分10
9分钟前
有人应助科研通管家采纳,获得30
9分钟前
10分钟前
可爱的函函应助悠悠采纳,获得10
10分钟前
郜南烟发布了新的文献求助10
11分钟前
包容新蕾完成签到 ,获得积分10
11分钟前
有人应助科研通管家采纳,获得30
11分钟前
12分钟前
悠悠发布了新的文献求助10
12分钟前
悠悠完成签到,获得积分10
12分钟前
1437594843完成签到 ,获得积分10
12分钟前
边曦完成签到 ,获得积分10
12分钟前
张振宇完成签到 ,获得积分10
13分钟前
Arthur完成签到 ,获得积分10
13分钟前
研友_nxw2xL完成签到,获得积分10
13分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826678
捐赠科研通 2454607
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527