Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 几何学 语言学 哲学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
正己化人应助二东采纳,获得10
1秒前
1秒前
Sarah发布了新的文献求助10
3秒前
杨佳文发布了新的文献求助10
3秒前
复杂斓完成签到,获得积分10
3秒前
4秒前
水心完成签到 ,获得积分10
4秒前
Li完成签到 ,获得积分10
4秒前
欣欣紫发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
花卷发布了新的文献求助10
5秒前
5秒前
mieyy应助SGQT采纳,获得10
5秒前
喵喵完成签到 ,获得积分10
6秒前
CodeCraft应助李李采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
lei完成签到,获得积分20
7秒前
HW发布了新的文献求助10
7秒前
冷静书白完成签到 ,获得积分20
8秒前
旦旦发布了新的文献求助10
9秒前
spring完成签到,获得积分10
10秒前
卡拉几黑发布了新的文献求助10
10秒前
lei发布了新的文献求助10
10秒前
饱满服饰发布了新的文献求助10
11秒前
852应助涨涨涨采纳,获得10
11秒前
11秒前
丘比特应助萧怡采纳,获得10
11秒前
11秒前
芋泥啵啵完成签到,获得积分10
11秒前
朱莹莹发布了新的文献求助10
11秒前
12秒前
PYM发布了新的文献求助10
12秒前
科研通AI5应助鸢尾采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086165
求助须知:如何正确求助?哪些是违规求助? 4302062
关于积分的说明 13406546
捐赠科研通 4127185
什么是DOI,文献DOI怎么找? 2260201
邀请新用户注册赠送积分活动 1264382
关于科研通互助平台的介绍 1198584