清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 几何学 语言学 哲学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
if奖完成签到,获得积分10
12秒前
领导范儿应助科研通管家采纳,获得10
20秒前
widesky777完成签到 ,获得积分0
30秒前
JamesPei应助着急的松采纳,获得10
38秒前
2520完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
1分钟前
碳土不凡完成签到 ,获得积分10
1分钟前
qiuqiu发布了新的文献求助10
1分钟前
nojego完成签到,获得积分10
1分钟前
冰凌心恋完成签到,获得积分10
1分钟前
qiuqiu完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
张张发布了新的文献求助10
2分钟前
小新小新完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
CipherSage应助张张采纳,获得10
3分钟前
风中不斜完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
oldcat96发布了新的文献求助10
3分钟前
所所应助oldcat96采纳,获得10
3分钟前
安琪琪完成签到 ,获得积分10
4分钟前
努力退休小博士完成签到 ,获得积分10
4分钟前
4分钟前
心想柿橙发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
跳跃的鹏飞完成签到 ,获得积分10
5分钟前
心想柿橙完成签到,获得积分10
5分钟前
科研通AI2S应助风中不斜采纳,获得10
5分钟前
婼汐完成签到 ,获得积分10
5分钟前
5分钟前
甜蜜发带完成签到 ,获得积分0
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
简因完成签到 ,获得积分10
6分钟前
7分钟前
Becky完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209