Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 语言学 哲学 几何学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助懒洋洋采纳,获得10
刚刚
Yyyyuy发布了新的文献求助10
刚刚
ww发布了新的文献求助30
刚刚
刚刚
陈涛完成签到,获得积分10
1秒前
研友_X89o6n完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
哲别发布了新的文献求助10
3秒前
3秒前
zk200107完成签到,获得积分20
3秒前
3秒前
3秒前
111完成签到 ,获得积分10
4秒前
smile发布了新的文献求助10
4秒前
英俊亦巧发布了新的文献求助20
4秒前
隐形曼青应助乐观之瑶采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
orixero应助名侦探柯基采纳,获得10
4秒前
随心发布了新的文献求助10
5秒前
浅柠半夏发布了新的文献求助10
5秒前
可靠之玉发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
茂茂发布了新的文献求助10
7秒前
7秒前
英姑应助赵光明采纳,获得10
7秒前
高兴山兰完成签到,获得积分20
7秒前
jys给jys的求助进行了留言
7秒前
杨建明发布了新的文献求助10
8秒前
8秒前
小熊发布了新的文献求助20
8秒前
9秒前
11秒前
高兴山兰发布了新的文献求助10
11秒前
哈哈哈哈完成签到,获得积分20
12秒前
共享精神应助lucky采纳,获得10
12秒前
梅子完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049