亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neurometabolic timecourse of healthy aging

代谢物 队列 医学 体素 核磁共振 内科学 物理 放射科
作者
Tao Gong,Steve C.N. Hui,Helge J. Zöllner,Mark K Britton,Yulu Song,Yufan Chen,Aaron T Gudmundson,Kathleen E. Hupfeld,Christopher W. Davies‐Jenkins,Saipavitra Murali‐Manohar,Eric C. Porges,Georg Oeltzschner,Weibo Chen,Guangbin Wang,Richard A.E. Edden
出处
期刊:NeuroImage [Elsevier]
卷期号:264: 119740-119740 被引量:9
标识
DOI:10.1016/j.neuroimage.2022.119740
摘要

The neurometabolic timecourse of healthy aging is not well-established, in part due to diversity of quantification methodology. In this study, a large structured cross-sectional cohort of male and female subjects throughout adulthood was recruited to investigate neurometabolic changes as a function of age, using consensus-recommended magnetic resonance spectroscopy quantification methods.102 healthy volunteers, with approximately equal numbers of male and female participants in each decade of age from the 20s, 30s, 40s, 50s, and 60s, were recruited with IRB approval. MR spectroscopic data were acquired on a 3T MRI scanner. Metabolite spectra were acquired using PRESS localization (TE=30 ms; 96 transients) in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Water-suppressed spectra were modeled using the Osprey algorithm, employing a basis set of 18 simulated metabolite basis functions and a cohort-mean measured macromolecular spectrum. Pearson correlations were conducted to assess relationships between metabolite concentrations and age for each voxel; Spearman correlations were conducted where metabolite distributions were non-normal. Paired t-tests were run to determine whether metabolite concentrations differed between the PCC and CSO. Finally, robust linear regressions were conducted to assess both age and sex as predictors of metabolite concentrations in the PCC and CSO and separately, to assess age, signal-noise ratio, and full width half maximum (FWHM) linewidth as predictors of metabolite concentrations.Data from four voxels were excluded (2 ethanol; 2 unacceptably large lipid signal). Statistically-significant age*metabolite Pearson correlations were observed for tCho (r(98)=0.33, p<0.001), tCr (r(98)=0.60, p<0.001), and mI (r(98)=0.32, p=0.001) in the CSO and for NAAG (r(98)=0.26, p=0.008), tCho(r(98)=0.33, p<0.001), tCr (r(98)=0.39, p<0.001), and Gln (r(98)=0.21, p=0.034) in the PCC. Spearman correlations for non-normal variables revealed a statistically significant correlation between sI and age in the CSO (r(86)=0.26, p=0.013). No significant correlations were seen between age and tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region (all p>0.20). Age associations for tCho, tCr, mI and sI in the CSO and for NAAG, tCho, and tCr in the PCC remained when controlling for sex in robust regressions. CSO NAAG and Asp, as well as PCC tNAA, sI, and Lac were higher in women; PCC Gln was higher in men. When including an age*sex interaction term in robust regression models, a significant age*sex interaction was seen for tCho (F(1,96)=11.53, p=0.001) and GSH (F(1,96)=7.15, p=0.009) in the CSO and tCho (F(1,96)=9.17, p=0.003), tCr (F(1,96)=9.59, p=0.003), mI (F(1,96)=6.48, p=0.012), and Lac (F(1,78)=6.50, p=0.016) in the PCC. In all significant interactions, metabolite levels increased with age in females, but not males. There was a significant positive correlation between linewidth and age. Age relationships with tCho, tCr, and mI in the CSO and tCho, tCr, mI, and sI in the PCC were significant after controlling for linewidth and FWHM in robust regressions.The primary (correlation) results indicated age relationships for tCho, tCr, mI, and sI in the CSO and for NAAG, tCho, tCr, and Gln in the PCC, while no age correlations were found for tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region. Our results provide a normative foundation for future work investigating the neurometabolic time course of healthy aging using MRS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑傲完成签到,获得积分10
20秒前
开心每一天完成签到 ,获得积分10
51秒前
房天川完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
杨泽宇发布了新的文献求助10
1分钟前
日常K人完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SnowElf完成签到,获得积分10
2分钟前
2分钟前
hongye发布了新的文献求助30
2分钟前
SnowElf发布了新的文献求助10
2分钟前
2分钟前
2分钟前
orangel发布了新的文献求助10
2分钟前
hongye完成签到 ,获得积分10
2分钟前
小粒橙完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
HaoZhang发布了新的文献求助10
3分钟前
HaoZhang完成签到,获得积分20
3分钟前
尼古拉斯铁柱完成签到 ,获得积分10
3分钟前
矜持完成签到 ,获得积分10
3分钟前
Mic应助笑点低的斑马采纳,获得10
4分钟前
lixuebin发布了新的文献求助10
4分钟前
4分钟前
小白发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
嗨嗨嗨完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
7分钟前
7分钟前
桥西小河完成签到 ,获得积分10
8分钟前
脑洞疼应助怕孤独的怀莲采纳,获得30
8分钟前
SUNny发布了新的文献求助10
8分钟前
有米爱吃又桂卷完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505