Neurometabolic timecourse of healthy aging

代谢物 队列 医学 体素 核磁共振 内科学 物理 放射科
作者
Tao Gong,Steve C.N. Hui,Helge J. Zöllner,Mark K Britton,Yulu Song,Yufan Chen,Aaron T Gudmundson,Kathleen E. Hupfeld,Christopher W. Davies‐Jenkins,Saipavitra Murali‐Manohar,Eric C. Porges,Georg Oeltzschner,Weibo Chen,Guangbin Wang,Richard A.E. Edden
出处
期刊:NeuroImage [Elsevier]
卷期号:264: 119740-119740 被引量:9
标识
DOI:10.1016/j.neuroimage.2022.119740
摘要

The neurometabolic timecourse of healthy aging is not well-established, in part due to diversity of quantification methodology. In this study, a large structured cross-sectional cohort of male and female subjects throughout adulthood was recruited to investigate neurometabolic changes as a function of age, using consensus-recommended magnetic resonance spectroscopy quantification methods.102 healthy volunteers, with approximately equal numbers of male and female participants in each decade of age from the 20s, 30s, 40s, 50s, and 60s, were recruited with IRB approval. MR spectroscopic data were acquired on a 3T MRI scanner. Metabolite spectra were acquired using PRESS localization (TE=30 ms; 96 transients) in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Water-suppressed spectra were modeled using the Osprey algorithm, employing a basis set of 18 simulated metabolite basis functions and a cohort-mean measured macromolecular spectrum. Pearson correlations were conducted to assess relationships between metabolite concentrations and age for each voxel; Spearman correlations were conducted where metabolite distributions were non-normal. Paired t-tests were run to determine whether metabolite concentrations differed between the PCC and CSO. Finally, robust linear regressions were conducted to assess both age and sex as predictors of metabolite concentrations in the PCC and CSO and separately, to assess age, signal-noise ratio, and full width half maximum (FWHM) linewidth as predictors of metabolite concentrations.Data from four voxels were excluded (2 ethanol; 2 unacceptably large lipid signal). Statistically-significant age*metabolite Pearson correlations were observed for tCho (r(98)=0.33, p<0.001), tCr (r(98)=0.60, p<0.001), and mI (r(98)=0.32, p=0.001) in the CSO and for NAAG (r(98)=0.26, p=0.008), tCho(r(98)=0.33, p<0.001), tCr (r(98)=0.39, p<0.001), and Gln (r(98)=0.21, p=0.034) in the PCC. Spearman correlations for non-normal variables revealed a statistically significant correlation between sI and age in the CSO (r(86)=0.26, p=0.013). No significant correlations were seen between age and tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region (all p>0.20). Age associations for tCho, tCr, mI and sI in the CSO and for NAAG, tCho, and tCr in the PCC remained when controlling for sex in robust regressions. CSO NAAG and Asp, as well as PCC tNAA, sI, and Lac were higher in women; PCC Gln was higher in men. When including an age*sex interaction term in robust regression models, a significant age*sex interaction was seen for tCho (F(1,96)=11.53, p=0.001) and GSH (F(1,96)=7.15, p=0.009) in the CSO and tCho (F(1,96)=9.17, p=0.003), tCr (F(1,96)=9.59, p=0.003), mI (F(1,96)=6.48, p=0.012), and Lac (F(1,78)=6.50, p=0.016) in the PCC. In all significant interactions, metabolite levels increased with age in females, but not males. There was a significant positive correlation between linewidth and age. Age relationships with tCho, tCr, and mI in the CSO and tCho, tCr, mI, and sI in the PCC were significant after controlling for linewidth and FWHM in robust regressions.The primary (correlation) results indicated age relationships for tCho, tCr, mI, and sI in the CSO and for NAAG, tCho, tCr, and Gln in the PCC, while no age correlations were found for tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region. Our results provide a normative foundation for future work investigating the neurometabolic time course of healthy aging using MRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华清引完成签到,获得积分10
1秒前
积极的尔竹完成签到,获得积分10
2秒前
大月兔完成签到,获得积分10
3秒前
遥远的尧完成签到,获得积分10
3秒前
matilda完成签到 ,获得积分10
4秒前
飞翔的蒲公英完成签到,获得积分10
4秒前
hopen发布了新的文献求助10
5秒前
felix完成签到,获得积分10
5秒前
精明尔柳完成签到,获得积分10
6秒前
翠甜翠甜大西瓜完成签到 ,获得积分10
6秒前
罗_举报501小队求助涉嫌违规
6秒前
7秒前
臭皮完成签到,获得积分10
7秒前
1235656646完成签到,获得积分10
8秒前
瘦瘦乌龟完成签到 ,获得积分10
9秒前
Rainbow完成签到,获得积分10
9秒前
Ode完成签到,获得积分10
9秒前
违规昵称完成签到,获得积分10
10秒前
风中夜天发布了新的文献求助10
11秒前
11秒前
KD完成签到,获得积分10
11秒前
叁丘山完成签到,获得积分10
12秒前
sia完成签到 ,获得积分0
13秒前
ning完成签到,获得积分10
13秒前
木目完成签到,获得积分10
14秒前
Silence完成签到,获得积分10
14秒前
包包琪完成签到 ,获得积分10
15秒前
汉中太守魏延完成签到,获得积分10
15秒前
陈军应助含糊的晓凡采纳,获得20
16秒前
疗伤烧肉粽完成签到,获得积分10
16秒前
nyfz2002发布了新的文献求助10
17秒前
大卫在分享完成签到,获得积分0
18秒前
吴明轩完成签到,获得积分10
19秒前
难过梦竹完成签到,获得积分10
19秒前
20秒前
z_8023完成签到,获得积分10
20秒前
XinEr完成签到 ,获得积分10
21秒前
白开水完成签到,获得积分10
22秒前
ZZzz发布了新的文献求助10
23秒前
中科路2020完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158752
求助须知:如何正确求助?哪些是违规求助? 2809955
关于积分的说明 7884750
捐赠科研通 2468704
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012