Applications of Artificial Intelligence in Cataract Surgery: A Review

医学 白内障手术 眼科 验光服务
作者
Abhimanyu S. Ahuja,A. Alcolea Paredes,Mallory L S Eisel,Sejal Kodwani,Isabella V. Wagner,Darby D. Miller,Syril Dorairaj
出处
期刊:Clinical Ophthalmology 卷期号:Volume 18: 2969-2975
标识
DOI:10.2147/opth.s489054
摘要

Cataract surgery is one of the most performed procedures worldwide, and cataracts are rising in prevalence in our aging population. With the increasing utilization of artificial intelligence (AI) in the medical field, we aimed to understand the extent of present AI applications in ophthalmic microsurgery, specifically cataract surgery. We conducted a literature search on PubMed and Google Scholar using keywords related to the application of AI in cataract surgery and included relevant articles published since 2010 in our review. The literature search yielded information on AI mechanisms such as machine learning (ML), deep learning (DL), and convolutional neural networks (CNN) as they are being incorporated into pre-operative, intraoperative, and post-operative stages of cataract surgery. AI is currently integrated in the pre-operative stage of cataract surgery to calculate intraocular lens (IOL) power and diagnose cataracts with slit-lamp microscopy and retinal imaging. During the intraoperative stage, AI has been applied to risk calculation, tracking surgical workflow, multimodal imaging data analysis, and instrument location via the use of "smart instruments". AI is also involved in predicting post-operative complications, such as posterior capsular opacification and intraocular lens dislocation, and organizing follow-up patient care. Challenges such as limited imaging dataset availability, unstandardized deep learning analysis metrics, and lack of generalizability to novel datasets currently present obstacles to the enhanced application of AI in cataract surgery. Upon addressing these barriers in upcoming research, AI stands to improve cataract screening accessibility, junior physician training, and identification of surgical complications through future applications of AI in cataract surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的奥特曼完成签到,获得积分10
2秒前
Zoom发布了新的文献求助10
2秒前
Zoom发布了新的文献求助10
3秒前
今后应助海洋采纳,获得10
3秒前
欢呼的傲旋完成签到,获得积分10
4秒前
7秒前
Alger完成签到,获得积分10
7秒前
郝好完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
远看寒山应助心落失采纳,获得10
9秒前
自然棒棒糖完成签到,获得积分10
9秒前
znchick发布了新的文献求助30
11秒前
果果发布了新的文献求助10
11秒前
奋斗完成签到 ,获得积分10
11秒前
孙新月完成签到 ,获得积分10
13秒前
Chang完成签到,获得积分10
14秒前
Zoom完成签到,获得积分10
14秒前
英俊的铭应助qianqian采纳,获得10
15秒前
无花果应助高大的曼寒采纳,获得10
15秒前
UPUP0707完成签到,获得积分10
16秒前
17秒前
ChenHan完成签到 ,获得积分10
18秒前
znchick完成签到,获得积分10
19秒前
李爱国应助可爱小蚱蜢采纳,获得10
20秒前
木木应助闪闪采梦采纳,获得10
20秒前
lzq完成签到,获得积分20
20秒前
陈霸下。发布了新的文献求助10
21秒前
七7发布了新的文献求助10
21秒前
21秒前
无花果应助幸福大白采纳,获得10
22秒前
顺利毕业发布了新的文献求助10
22秒前
烟花应助gxr采纳,获得10
22秒前
22秒前
科研小弟完成签到,获得积分10
23秒前
zoeydonut发布了新的文献求助30
23秒前
隐形曼青应助翟语雪采纳,获得10
24秒前
vincen91完成签到,获得积分10
25秒前
情怀应助果果采纳,获得10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248411
求助须知:如何正确求助?哪些是违规求助? 2891780
关于积分的说明 8268752
捐赠科研通 2559811
什么是DOI,文献DOI怎么找? 1388701
科研通“疑难数据库(出版商)”最低求助积分说明 650798
邀请新用户注册赠送积分活动 627775