Image representation of vibration signals and its application on fault diagnosis of rotating machinery with convolutional neural network: A benchmak study

卷积神经网络 断层(地质) 代表(政治) 振动 人工智能 计算机科学 图像(数学) 模式识别(心理学) 人工神经网络 计算机视觉 声学 物理 地质学 地震学 政治 法学 政治学
作者
J. Yuan,Qing Zhang,Jianqun Zhang,Xianrong Qin,Yuantao Sun
标识
DOI:10.1177/09544062241284465
摘要

Intelligent fault diagnosis methods on the basis of two-dimensional (2D) image representation of vibration signals (IRVS) and the convolutional neural network (CNN) have been extensively applied in rotating machinery. However, as a large number of IRVS methods are being used, their performance has not been fairly and comprehensively evaluated, which leads to difficulties for researchers to make choices. To address this issue, this paper conducted a benchmark study aimed at comparing the comprehensive performance of different IRVS methods, including computation time, fault diagnosis accuracy, and noise resistance performance. Firstly, the IRVS methods and the fault diagnosis method combining IRVS and CNN were summarized. Then, the general process of the IRVS-CNN method was proposed. Finally, 17 types of IRVS methods were selected, and the performance of the IRVS method was compared based on three datasets and two classic CNN models. The results indicate that the computing time taken to generate 2D images using unthresholded recurrence plot (UTRP), and frequency-domain unthresholded recurrence plot (FDUTRP) methods is relatively longer. The vast majority of frequency-domain methods and time-frequency domain methods can achieve or approach a high accuracy rate in all experiments, demonstrating their outstanding performance. Frequency-domain color vibration image (FDCVI), FDUTRP, and continuous wavelet transform (CWT) have good noise resistance. These results provide a reference for future researchers in selecting IRVS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLC发布了新的文献求助10
1秒前
cis2014发布了新的文献求助10
1秒前
春树爱学术完成签到,获得积分10
1秒前
Akim应助郗栗采纳,获得10
1秒前
1秒前
1秒前
11完成签到 ,获得积分10
2秒前
李思洋发布了新的文献求助10
2秒前
施耐德发布了新的文献求助10
2秒前
欧阳万仇发布了新的文献求助10
3秒前
3秒前
pharmac完成签到,获得积分10
3秒前
打打应助奔奔采纳,获得10
3秒前
4秒前
木南完成签到,获得积分20
4秒前
sun0115完成签到 ,获得积分10
4秒前
lyp完成签到 ,获得积分10
4秒前
玄远完成签到,获得积分10
4秒前
影像组学完成签到,获得积分10
5秒前
ZZICU完成签到,获得积分10
5秒前
苏雨发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
smile完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
7秒前
7秒前
酷波er应助move采纳,获得10
8秒前
lucky完成签到 ,获得积分10
8秒前
孤独巡礼完成签到,获得积分10
8秒前
an发布了新的文献求助10
9秒前
隐形曼青应助哒丝萌德采纳,获得10
9秒前
fleeting发布了新的文献求助10
9秒前
bmhs2017应助粥粥爱糊糊采纳,获得10
9秒前
9秒前
9秒前
Mango完成签到,获得积分10
10秒前
10秒前
meteor完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472