Image representation of vibration signals and its application on fault diagnosis of rotating machinery with convolutional neural network: A benchmak study

卷积神经网络 断层(地质) 代表(政治) 振动 人工智能 计算机科学 图像(数学) 模式识别(心理学) 人工神经网络 计算机视觉 声学 物理 地质学 地震学 政治 政治学 法学
作者
J. Yuan,Qing Zhang,Jianqun Zhang,Xianrong Qin,Yuantao Sun
标识
DOI:10.1177/09544062241284465
摘要

Intelligent fault diagnosis methods on the basis of two-dimensional (2D) image representation of vibration signals (IRVS) and the convolutional neural network (CNN) have been extensively applied in rotating machinery. However, as a large number of IRVS methods are being used, their performance has not been fairly and comprehensively evaluated, which leads to difficulties for researchers to make choices. To address this issue, this paper conducted a benchmark study aimed at comparing the comprehensive performance of different IRVS methods, including computation time, fault diagnosis accuracy, and noise resistance performance. Firstly, the IRVS methods and the fault diagnosis method combining IRVS and CNN were summarized. Then, the general process of the IRVS-CNN method was proposed. Finally, 17 types of IRVS methods were selected, and the performance of the IRVS method was compared based on three datasets and two classic CNN models. The results indicate that the computing time taken to generate 2D images using unthresholded recurrence plot (UTRP), and frequency-domain unthresholded recurrence plot (FDUTRP) methods is relatively longer. The vast majority of frequency-domain methods and time-frequency domain methods can achieve or approach a high accuracy rate in all experiments, demonstrating their outstanding performance. Frequency-domain color vibration image (FDCVI), FDUTRP, and continuous wavelet transform (CWT) have good noise resistance. These results provide a reference for future researchers in selecting IRVS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓儿完成签到,获得积分20
1秒前
执着念寒发布了新的文献求助10
2秒前
ty心明亮完成签到 ,获得积分10
2秒前
开心完成签到,获得积分10
3秒前
辉白发布了新的文献求助10
3秒前
ZzH完成签到,获得积分20
3秒前
卷aaaa完成签到,获得积分10
4秒前
江一发布了新的文献求助10
4秒前
4秒前
111完成签到,获得积分10
5秒前
852应助丢丢采纳,获得10
7秒前
JamesPei应助怡然南松采纳,获得80
10秒前
11秒前
传感魂应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
小李应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
思源应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
珊熙完成签到,获得积分10
12秒前
Psy发布了新的文献求助10
13秒前
13秒前
14秒前
现实的听芹完成签到,获得积分10
14秒前
16秒前
yh完成签到,获得积分10
16秒前
hyde发布了新的文献求助10
18秒前
珊熙发布了新的文献求助10
18秒前
所所应助sarach采纳,获得10
19秒前
lin应助焱阳采纳,获得20
20秒前
20秒前
秀丽烨霖应助饱满的千易采纳,获得30
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258475
求助须知:如何正确求助?哪些是违规求助? 2900346
关于积分的说明 8309788
捐赠科研通 2569594
什么是DOI,文献DOI怎么找? 1395794
科研通“疑难数据库(出版商)”最低求助积分说明 653293
邀请新用户注册赠送积分活动 631201