悬挂(拓扑)
工程类
汽车工程
主动悬架
车辆动力学
控制(管理)
计算机科学
电气工程
执行机构
同伦
数学
人工智能
纯数学
作者
Huailong Shi,Jing Zeng,Liang Duan
标识
DOI:10.1080/00423114.2024.2398005
摘要
This study proposes the use of active lateral secondary suspension (ALS) to address low-frequency carbody swaying in high-speed rail vehicles under low wheel-rail conicity conditions. Field experiments reveal lateral acceleration exceeding 0.10 g at a dominant frequency of 1.4 Hz, with a Sperling index exceeding 3.0 during carbody swaying occurs. By integrating field-measured wheel/rail profiles and yaw damper parameters into a multibody dynamics model of vehicle system, the coupling between bogie hunting and carbody yaw and upper-center roll modes is identified as the root cause of swaying. Evaluating classic sky-hook ALS controls, damping control proves highly effective. Doubling the damping coefficient and blow-off force becomes essential when only half of the four actuators per vehicle are active. Stiffness control adjusts carbody suspension modal characteristics to prevent resonances with the bogie hunting mode, effectively suppressing swaying. In contrast, inerter control exhibits limited efficacy. Semi-active control, with optimised gain settings, can also alleviate swaying, with control system delay identified as a critical factor, suggesting a 100 ms limit for effective swaying suppression.
科研通智能强力驱动
Strongly Powered by AbleSci AI