木犀草素
多酚
类黄酮
食品科学
餐食
豆粕
生物
化学
抗氧化剂
生物化学
原材料
生态学
作者
Xuecong Liang,Shugui Zheng,Yang Zhou,Jiguang Li,Zhuo Zhang
摘要
Soybean meal is known to be able to cause intestinal damage and dysfunction in early-weaned piglets. However, research on natural compounds that can alleviate these effects is scarce. In this study, the effect of luteolin, a natural flavonoid, on intestinal health of piglets fed on a soybean meal-based diet was explored. A total of eighteen 21-d-old piglets were selected and randomly divided into 3 groups: a negative control group fed with an animal protein-based diet, a positive control group fed with a soybean meal-based diet, and a luteolin group that was fed with the positive control diet supplemented with luteolin. The results suggested that luteolin supplementation significantly increased the average daily gain and average daily feed intake of early-weaned piglets, while effectively reducing the diarrhea incidence. Additionally, luteolin supplementation lowered the levels of soybean antigen-specific immunoglobulin G and immunoglobulin E anitbodies, increased the superoxide dismutase activity in both sera and small intestine mucosa, and enhanced the total antioxidant capacity in sera. Further research found that luteolin supplementation increased the intestinal villi height and decreased the crypt depth, resulting in an increased ratio of villi to crypts. At the same time, it reduced the concentration of serum diamine oxidase, improving intestinal barrier function. Moreover, luteolin significantly decreased the gene expression of Bax and Caspase-3, reducing cell apoptosis in the intestinal mucosa. Luteolin supplementation also increased the abundance of Actinobacteria at the phylum level, reduced the abundance of Prevotella and increased the abundance of Olsenella at the genus level. In conclusion, the supplementation of luteolin to the soybean meal diet was capable of effectively reducing allergic response, enhancing the antioxidant capacity of early-weaned piglets, protecting their intestinal barrier function, inhibiting intestinal mucosal cell apoptosis, and altering the intestinal microbiota structure, therefore promoting intestinal health and improving production performance in early-weaned piglets.
科研通智能强力驱动
Strongly Powered by AbleSci AI