Predicting dropout from psychological treatment using different machine learning algorithms, resampling methods, and sample sizes

重采样 辍学(神经网络) 样品(材料) 机器学习 心理干预 计算机科学 算法 样本量测定 人工智能 刀切重采样 结果(博弈论) 采样(信号处理) 统计 心理学 数学 精神科 数理经济学 滤波器(信号处理) 计算机视觉 估计员 化学 色谱法
作者
Julia Giesemann,Jaime Delgadillo,Brian Schwartz,Björn Bennemann,Wolfgang Lutz
出处
期刊:Psychotherapy Research [Informa]
卷期号:33 (6): 683-695 被引量:1
标识
DOI:10.1080/10503307.2022.2161432
摘要

Objective: The occurrence of dropout from psychological interventions is associated with poor treatment outcome and high health, societal and economic costs. Recently, machine learning (ML) algorithms have been tested in psychotherapy outcome research. Dropout predictions are usually limited by imbalanced datasets and the size of the sample. This paper aims to improve dropout prediction by comparing ML algorithms, sample sizes and resampling methods. Method: Twenty ML algorithms were examined in twelve subsamples (drawn from a sample of N = 49,602) using four resampling methods in comparison to the absence of resampling and to each other. Prediction accuracy was evaluated in an independent holdout dataset using the F1-Measure. Results: Resampling methods improved the performance of ML algorithms and down-sampling can be recommended, as it was the fastest method and as accurate as the other methods. For the highest mean F1-Score of .51 a minimum sample size of N = 300 was necessary. No specific algorithm or algorithm group can be recommended. Conclusion: Resampling methods could improve the accuracy of predicting dropout in psychological interventions. Down-sampling is recommended as it is the least computationally taxing method. The training sample should contain at least 300 cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助晚心采纳,获得10
1秒前
1秒前
CCR发布了新的文献求助10
2秒前
科研通AI5应助mario采纳,获得10
2秒前
3秒前
彭于晏应助外向邑采纳,获得10
3秒前
隐形曼青应助么么哒大王采纳,获得10
3秒前
m赤子心发布了新的文献求助10
4秒前
FashionBoy应助和谐的映秋采纳,获得10
4秒前
5秒前
小竹子发布了新的文献求助10
6秒前
zdy发布了新的文献求助10
7秒前
7秒前
邵孤丝完成签到,获得积分20
7秒前
bkagyin应助jkdajsk采纳,获得10
8秒前
LING发布了新的文献求助10
10秒前
10秒前
Neltharion完成签到,获得积分10
12秒前
荀之玉完成签到,获得积分10
13秒前
16秒前
开放雪碧完成签到,获得积分10
17秒前
18秒前
18秒前
数字生命发布了新的文献求助10
19秒前
19秒前
称心凡霜完成签到,获得积分10
22秒前
李健应助小杜采纳,获得30
23秒前
开放雪碧发布了新的文献求助10
23秒前
易甜甜甜完成签到,获得积分10
24秒前
研友_VZG7GZ应助么么哒大王采纳,获得10
28秒前
31秒前
WANG发布了新的文献求助10
35秒前
樊孟发布了新的文献求助10
36秒前
研友_VZG7GZ应助不散的和弦采纳,获得30
37秒前
qdd完成签到,获得积分10
37秒前
huanhuan发布了新的文献求助10
37秒前
852应助打死小胖纸采纳,获得10
41秒前
41秒前
英姑应助冷静孤容采纳,获得10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978