CAMR: cross-aligned multimodal representation learning for cancer survival prediction

模态(人机交互) 人工智能 计算机科学 代表(政治) 特征学习 模式 机器学习 子空间拓扑 深度学习 政治学 社会科学 政治 社会学 法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (1) 被引量:9
标识
DOI:10.1093/bioinformatics/btad025
摘要

Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干雁凡发布了新的文献求助10
刚刚
逾越完成签到,获得积分10
1秒前
快乐花卷完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
Kate完成签到,获得积分10
3秒前
3秒前
隐形曼青应助跳跃的太君采纳,获得10
3秒前
3秒前
虚心岂愈完成签到,获得积分10
4秒前
苹果丑发布了新的文献求助10
4秒前
ZZ完成签到,获得积分10
4秒前
4秒前
zy完成签到,获得积分10
4秒前
syr完成签到 ,获得积分10
4秒前
机智宛秋完成签到,获得积分10
4秒前
daggeraxe完成签到 ,获得积分10
5秒前
5秒前
喜文发布了新的文献求助10
5秒前
6秒前
6秒前
DR完成签到,获得积分10
7秒前
Juvenilesy完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
魔幻的向松完成签到,获得积分10
8秒前
繁星完成签到 ,获得积分10
9秒前
zy发布了新的文献求助10
9秒前
凤凰应助赵一采纳,获得50
9秒前
浮游应助struggle采纳,获得10
9秒前
9秒前
啊莲发布了新的文献求助10
10秒前
烟柳画桥完成签到,获得积分10
10秒前
研友_ZzReaZ发布了新的文献求助10
10秒前
英姑应助DueDue0327采纳,获得10
10秒前
研友_8RlQ2n完成签到,获得积分10
10秒前
田様应助SHEN采纳,获得10
11秒前
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010