CAMR: cross-aligned multimodal representation learning for cancer survival prediction

模态(人机交互) 人工智能 计算机科学 代表(政治) 特征学习 模式 机器学习 子空间拓扑 深度学习 政治学 社会科学 政治 社会学 法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (1) 被引量:9
标识
DOI:10.1093/bioinformatics/btad025
摘要

Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
戴岱发布了新的文献求助10
1秒前
追寻荔枝完成签到 ,获得积分20
3秒前
LU发布了新的文献求助10
4秒前
洁净艳一完成签到,获得积分10
4秒前
4秒前
胡凉水完成签到,获得积分10
7秒前
7秒前
故事与她发布了新的文献求助10
7秒前
负责流口水完成签到,获得积分10
7秒前
Grey发布了新的文献求助10
10秒前
11秒前
11秒前
夜雨完成签到,获得积分10
12秒前
13秒前
zjh完成签到,获得积分10
14秒前
CKX完成签到,获得积分10
15秒前
LU完成签到,获得积分20
18秒前
小熙完成签到 ,获得积分10
18秒前
18秒前
猪猪宝宝完成签到,获得积分10
18秒前
故事与她发布了新的文献求助10
19秒前
羽砸发布了新的文献求助10
23秒前
桐桐应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
852应助优雅涔雨采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
ECHO发布了新的文献求助10
25秒前
小蘑菇应助江梦曼采纳,获得10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482449
求助须知:如何正确求助?哪些是违规求助? 3072108
关于积分的说明 9125778
捐赠科研通 2763936
什么是DOI,文献DOI怎么找? 1516742
邀请新用户注册赠送积分活动 701767
科研通“疑难数据库(出版商)”最低求助积分说明 700592