CAMR: cross-aligned multimodal representation learning for cancer survival prediction

模态(人机交互) 人工智能 计算机科学 代表(政治) 特征学习 模式 机器学习 子空间拓扑 深度学习 政治学 社会科学 政治 社会学 法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (1) 被引量:9
标识
DOI:10.1093/bioinformatics/btad025
摘要

Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助laochen采纳,获得10
1秒前
盘尼西林发布了新的文献求助10
1秒前
迟大猫应助专心搞学术采纳,获得10
2秒前
4秒前
孙奕完成签到,获得积分10
5秒前
5秒前
俟天晴完成签到,获得积分10
5秒前
淡定问芙发布了新的文献求助30
6秒前
8秒前
Lewis完成签到,获得积分10
9秒前
orixero应助TranYan采纳,获得10
9秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
今后应助333采纳,获得10
13秒前
pu发布了新的文献求助10
14秒前
Akim应助梓榆采纳,获得10
15秒前
劼大大完成签到,获得积分10
15秒前
最优解完成签到 ,获得积分20
16秒前
16秒前
通~发布了新的文献求助10
16秒前
一段乐多完成签到,获得积分10
17秒前
17秒前
17秒前
给我找完成签到,获得积分10
18秒前
桐桐应助Yuki0616采纳,获得10
18秒前
小马甲应助鸣隐采纳,获得10
18秒前
ycd完成签到,获得积分10
19秒前
ark861023完成签到,获得积分10
19秒前
淡定问芙完成签到,获得积分10
19秒前
斯文败类应助惠惠采纳,获得10
20秒前
20秒前
Meowly完成签到,获得积分10
20秒前
21秒前
21秒前
陶醉觅夏发布了新的文献求助10
21秒前
pu完成签到,获得积分10
21秒前
小灵通完成签到,获得积分10
21秒前
给我找发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794