亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAMR: cross-aligned multimodal representation learning for cancer survival prediction

模态(人机交互) 人工智能 计算机科学 代表(政治) 特征学习 模式 机器学习 子空间拓扑 深度学习 政治学 社会科学 政治 社会学 法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (1) 被引量:9
标识
DOI:10.1093/bioinformatics/btad025
摘要

Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洞两发布了新的文献求助10
7秒前
渥鸡蛋完成签到 ,获得积分10
7秒前
shhoing应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
13秒前
cc321完成签到 ,获得积分10
33秒前
45秒前
45秒前
46秒前
02发布了新的文献求助10
52秒前
婉莹完成签到 ,获得积分0
52秒前
AX完成签到,获得积分10
55秒前
1分钟前
1分钟前
Atopos发布了新的文献求助10
1分钟前
1分钟前
神奇五子棋完成签到 ,获得积分10
1分钟前
1分钟前
拉长的秋白完成签到 ,获得积分10
1分钟前
lijiayu发布了新的文献求助10
1分钟前
1分钟前
传奇3应助lijiayu采纳,获得10
1分钟前
曾丽红完成签到,获得积分10
1分钟前
Orange应助风雨采纳,获得10
1分钟前
无情的踏歌应助Yuanyuan采纳,获得10
1分钟前
1分钟前
满意机器猫完成签到 ,获得积分10
2分钟前
春和景明完成签到 ,获得积分20
2分钟前
dodo完成签到,获得积分10
2分钟前
Yuanyuan发布了新的文献求助30
2分钟前
无情的踏歌应助洞两采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
达不溜搽完成签到 ,获得积分10
2分钟前
华鹊鹊完成签到,获得积分10
2分钟前
2分钟前
华鹊鹊发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561295
求助须知:如何正确求助?哪些是违规求助? 4646384
关于积分的说明 14678498
捐赠科研通 4587703
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490472
关于科研通互助平台的介绍 1461362