CAMR: cross-aligned multimodal representation learning for cancer survival prediction

模态(人机交互) 人工智能 计算机科学 代表(政治) 特征学习 模式 机器学习 子空间拓扑 深度学习 政治学 社会科学 政治 社会学 法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (1) 被引量:9
标识
DOI:10.1093/bioinformatics/btad025
摘要

Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小满完成签到,获得积分20
1秒前
dawn发布了新的文献求助10
1秒前
小倩应助文件撤销了驳回
2秒前
2秒前
2秒前
JamesPei应助梓歆采纳,获得10
3秒前
哈哈哈发布了新的文献求助10
3秒前
3秒前
麻辣烫完成签到 ,获得积分10
4秒前
赘婿应助xue采纳,获得10
4秒前
狄安娜GoGo完成签到,获得积分10
4秒前
852应助啦啦哗啦啦哗采纳,获得10
5秒前
蓦然回首完成签到,获得积分10
5秒前
大模型应助武雨寒采纳,获得10
6秒前
6秒前
6秒前
何以解忧完成签到,获得积分10
7秒前
7秒前
YamDaamCaa应助冷傲紫烟采纳,获得30
7秒前
fangfang完成签到,获得积分10
8秒前
8秒前
wg言完成签到,获得积分10
9秒前
9秒前
研友_VZG7GZ应助苦短采纳,获得10
9秒前
西哥完成签到 ,获得积分10
9秒前
美丽觅夏完成签到 ,获得积分10
10秒前
金熙美发布了新的文献求助10
10秒前
苹果觅波完成签到,获得积分10
11秒前
骨外6点尹医生完成签到,获得积分10
11秒前
12秒前
见祥雨完成签到,获得积分10
13秒前
Liquier发布了新的文献求助10
13秒前
14秒前
Zbre完成签到,获得积分10
15秒前
轻松的鑫发布了新的文献求助10
16秒前
16秒前
卓梨完成签到,获得积分10
17秒前
诺诺完成签到 ,获得积分10
18秒前
汉堡包应助梓歆采纳,获得10
18秒前
完美世界应助研友_qZAe6Z采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975922
求助须知:如何正确求助?哪些是违规求助? 3520226
关于积分的说明 11201711
捐赠科研通 3256720
什么是DOI,文献DOI怎么找? 1798423
邀请新用户注册赠送积分活动 877576
科研通“疑难数据库(出版商)”最低求助积分说明 806452