模态(人机交互)
人工智能
计算机科学
代表(政治)
特征学习
模式
机器学习
子空间拓扑
深度学习
政治学
社会科学
政治
社会学
法学
作者
Xingqi Wu,Yi Shi,Minghui Wang,Ao Li
出处
期刊:Bioinformatics
[Oxford University Press]
日期:2023-01-01
卷期号:39 (1)
被引量:4
标识
DOI:10.1093/bioinformatics/btad025
摘要
Accurately predicting cancer survival is crucial for helping clinicians to plan appropriate treatments, which largely improves the life quality of cancer patients and spares the related medical costs. Recent advances in survival prediction methods suggest that integrating complementary information from different modalities, e.g. histopathological images and genomic data, plays a key role in enhancing predictive performance. Despite promising results obtained by existing multimodal methods, the disparate and heterogeneous characteristics of multimodal data cause the so-called modality gap problem, which brings in dramatically diverse modality representations in feature space. Consequently, detrimental modality gaps make it difficult for comprehensive integration of multimodal information via representation learning and therefore pose a great challenge to further improvements of cancer survival prediction.To solve the above problems, we propose a novel method called cross-aligned multimodal representation learning (CAMR), which generates both modality-invariant and -specific representations for more accurate cancer survival prediction. Specifically, a cross-modality representation alignment learning network is introduced to reduce modality gaps by effectively learning modality-invariant representations in a common subspace, which is achieved by aligning the distributions of different modality representations through adversarial training. Besides, we adopt a cross-modality fusion module to fuse modality-invariant representations into a unified cross-modality representation for each patient. Meanwhile, CAMR learns modality-specific representations which complement modality-invariant representations and therefore provides a holistic view of the multimodal data for cancer survival prediction. Comprehensive experiment results demonstrate that CAMR can successfully narrow modality gaps and consistently yields better performance than other survival prediction methods using multimodal data.CAMR is freely available at https://github.com/wxq-ustc/CAMR.Supplementary data are available at Bioinformatics online.
科研通智能强力驱动
Strongly Powered by AbleSci AI