Powerful tools for personalisation: Using large language model-based agents, knowledge graphs and customer signals to connect with users

个性化 计算机科学 知识图 知识管理 万维网 人机交互 人工智能
作者
Seth Earley,Sanjay S. Mehta
出处
期刊:Applied Marketing Analytics 卷期号:10 (3): 271-271
标识
DOI:10.69554/nmce9908
摘要

This paper discusses how large language models’ (LLMs) agentic workflows powering ChatGPT types of applications can use a combination of enterprise data sources to hyper-personalise information at scale for customers or employees. Typical use cases include marketing communications, customer support, content creation and digital assistants. The approaches described are at one level established in theory; however, practical adoption has been challenging and the combination of templated prompts with LLMs and agent call outs to external application programming interfaces and knowledge sources are new. The data sources using these approaches include knowledge, content and transactional data with near real time and real time customer signals. Customer signal data can include first, second or third party data that describes the characteristics of a customer or employee, as well as real time ‘digital body language’ — click paths, searches, responses to campaigns and chatbot dialogues. Two use cases in two industries — automotive and industrial manufacturing — will be detailed to illustrate how the same principles and approaches can be applied in situations that are very different, and how a knowledge architecture combined with retrieval augmented generation (RAG) should be developed and applied. Analytics to monitor outcomes and enable manual and automated course corrections will be discussed. The outcomes are unified and contextualised experiences realising the sometimes ambitious designs of user experience developers. It is easier to storyboard a design than it is to make it a reality. Marketing organisations are more and more responsible for the end-to-end customer journey and experience. However, the customer journey is a knowledge journey. At each step of the process, they are asking questions about the company, product or service. What product and solutions do you offer? Which ones are right for me? How do I choose a particular offering? How do I purchase or procure the product or service? How can I maintain it, and get service or support? How do I get the most from my purchase? What are the options for upgrading or enhancing my solution? These are marketing communications that consist of educating the prospect rather than selling to them. Today's prospects are empowered with greater information and understanding of offerings and the competition than ever before. Marketing is therefore responsible for helping them make the decision based on information and references that are presented at each stage of the journey.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助jason70采纳,获得10
2秒前
彪壮的青雪完成签到,获得积分10
2秒前
ATREE完成签到,获得积分10
3秒前
6秒前
饭神仙鱼发布了新的文献求助10
7秒前
kk发布了新的文献求助10
9秒前
11秒前
bkagyin应助落后中蓝采纳,获得10
12秒前
JTZDZH完成签到,获得积分10
12秒前
ppp完成签到,获得积分10
16秒前
16秒前
Fiona完成签到,获得积分10
19秒前
拉磨的狗发布了新的文献求助10
19秒前
科研yu完成签到,获得积分10
19秒前
液晶屏99完成签到,获得积分10
20秒前
yangyang发布了新的文献求助10
22秒前
mengfx5完成签到,获得积分10
23秒前
kk完成签到,获得积分10
24秒前
vic303完成签到,获得积分10
25秒前
woollen2022发布了新的文献求助20
25秒前
JTZDZH发布了新的文献求助10
26秒前
29秒前
30秒前
饭神仙鱼发布了新的文献求助10
31秒前
希望天下0贩的0应助灵允采纳,获得10
31秒前
xzy998应助畅快焦采纳,获得10
35秒前
小绵羊发布了新的文献求助10
36秒前
36秒前
难过的丹烟完成签到,获得积分10
37秒前
白开水完成签到,获得积分10
38秒前
林深不见鹿完成签到,获得积分10
39秒前
欢喜发布了新的文献求助10
41秒前
研友_LwXJgn发布了新的文献求助10
44秒前
啦啦啦啦啦完成签到,获得积分10
48秒前
思源应助kyt采纳,获得10
48秒前
48秒前
我爱学习完成签到,获得积分10
49秒前
星际牛仔完成签到 ,获得积分10
53秒前
lshlsh发布了新的文献求助10
54秒前
Mae完成签到 ,获得积分10
56秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380175
求助须知:如何正确求助?哪些是违规求助? 2995516
关于积分的说明 8763828
捐赠科研通 2680513
什么是DOI,文献DOI怎么找? 1467984
科研通“疑难数据库(出版商)”最低求助积分说明 678810
邀请新用户注册赠送积分活动 670829