Machine-learning-based on multimodality radiomics analysis for the Preoperative Prediction for local relapse in osteosarcoma

随机森林 接收机工作特性 支持向量机 人工智能 医学 逻辑回归 Lasso(编程语言) 磁共振成像 特征选择 机器学习 放射科 射线照相术 骨肉瘤 核医学 计算机科学 内科学 病理 万维网
作者
Zhendong Luo,Renyi Liu,Jing Li,Yulin Li,Xinping Shen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3851721/v1
摘要

Abstract PURPOSE: This study aimed to identify patients with local relapse (≤ 2 years) in osteosarcoma after surgical resection and make better clinical decisions by constructing a preoperative predictive model based on radiograph and multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS: A retrospective study of 92 consecutive patients (training set, n = 61; testing set, n = 31) with extremity high-grade osteosarcoma were enrolled. The imaging features for each patient were extracted from radiograph, multiparametric MRI (T1WI, T2WI and T1WI-CE). In order to select features, three steps including minimal-redundancy-maximum-relevance (mRMR), least absolute shrinkage and selection operator (LASSO) regression and the random forest recursive feature elimination (RF-RFE) were performed. The classification performance was evaluated with four classifiers: extreme gradient boosting (XGB), logistic regression (LR), support vector machine (SVM) and random forest (RF). The receiver-operating characteristic curve (ROC) and the area under the curve (AUC) were used to evaluate the performance of the classifiers. DeLong’s test was utilized for comparing the AUCs. RESULTS: The performance (AUC, sensitivity, specificity, and accuracy) of four classifiers (RF, SVM, LR and XGB) using radiograph-MRI as image inputs were stable (all Hosmer–Lemeshow index > 0.05) with the fair to good prognosis efficacy. The RF classifier using radiograph-MRI features as training inputs exhibited better performance (AUC = 0.806, 0.868) than that using MRI-only (AUC = 0.774, 0.771) and radiograph-only (AUC = 0.613 and 0.627) in the training and testing sets (p < 0.05) while the other three classifiers showed no difference between MRI only and radiograph-MRI models. CONCLUSION: The tumoral radiograph and multiparametric MRI radiomics model can promisingly predict local relapse in extremity high-grade osteosarcoma. Our results highlighted the potential value of the tumoral radiomic model in osteosarcoma management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助胥风采纳,获得10
1秒前
2秒前
穿堂风发布了新的文献求助10
5秒前
8秒前
嘻嘻嘻完成签到,获得积分10
8秒前
斯文败类应助dd采纳,获得10
10秒前
小钱钱发布了新的文献求助10
11秒前
12秒前
14秒前
阳光总在风雨后完成签到,获得积分10
17秒前
健壮的怜烟应助斯文钢笔采纳,获得20
17秒前
18秒前
20秒前
科研通AI2S应助穿堂风采纳,获得10
20秒前
闪闪小玉完成签到,获得积分10
21秒前
pig120完成签到 ,获得积分10
21秒前
大豆发布了新的文献求助10
21秒前
连衣裙完成签到,获得积分20
23秒前
晶晶发布了新的文献求助10
23秒前
Lucas应助林爷采纳,获得30
25秒前
26秒前
26秒前
28秒前
嘻嘻嘻发布了新的文献求助10
29秒前
传奇3应助fuchao采纳,获得10
29秒前
kaifeiQi完成签到,获得积分10
29秒前
yoo发布了新的文献求助10
30秒前
33秒前
汉堡包应助王提采纳,获得10
34秒前
Wayne发布了新的文献求助50
35秒前
沿途东行完成签到 ,获得积分10
36秒前
38秒前
wangyongfang发布了新的文献求助10
38秒前
侠客完成签到 ,获得积分10
38秒前
赘婿应助冷静的夏槐采纳,获得10
39秒前
fuchao发布了新的文献求助10
43秒前
44秒前
安安发布了新的文献求助10
45秒前
我没K完成签到 ,获得积分10
46秒前
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187