Artificial Intelligence for Dunhuang Cultural Heritage Protection: The Project and the Dataset

计算机科学 文化遗产 风格(视觉艺术) 人工智能 学习迁移 绘画 财产(哲学) 质量(理念) 中国 传输(计算) 考古 视觉艺术 历史 哲学 艺术 认识论 并行计算
作者
Tianxiu Yu,Cong Lin,Shijie Zhang,Chunxue Wang,Xiaohong Ding,Huili An,Xiaoxiang Liu,Ting Qu,Liang Wan,Shaodi You,Jian Wu,Jiawan Zhang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:130 (11): 2646-2673 被引量:18
标识
DOI:10.1007/s11263-022-01665-x
摘要

Abstract In this work, we introduce our project on Dunhuang cultural heritage protection using artificial intelligence. The Dunhuang Mogao Grottoes in China, also known as the Grottoes of the Thousand Buddhas, is a religious and cultural heritage located on the Silk Road. The grottoes were built from the 4th century to the 14th century. After thousands of years, the in grottoes decaying is serious. In addition, numerous historical records were destroyed throughout the years, making it difficult for archaeologists to reconstruct history. We aim to use modern computer vision and machine learning technologies to solve such challenges. First, we propose to use deep networks to automatically perform the restoration. Through out experiments, we find the automated restoration can provide comparable quality as those manually restored from an archaeologist. This can significantly speed up the restoration given the enormous size of the historical paintings. Second, we propose to use detection and retrieval for further analyzing the tremendously large amount of objects because it is unreasonable to manually label and analyze them. Several state-of-the-art methods are rigorously tested and quantitatively compared in different criteria and categorically. In this work, we created a new dataset, namely, AI for Dunhuang, to facilitate the research. Version v1.0 of the dataset comprises of data and label for the restoration, style transfer, detection, and retrieval. Specifically, the dataset has 10,000 images for restoration, 3455 for style transfer, and 6147 for property retrieval. Lastly, we propose to use style transfer to link and analyze the styles over time, given that the grottoes were build over 1000 years by numerous artists. This enables the possibly to analyze and study the art styles over 1000 years and further enable future researches on cross-era style analysis. We benchmark representative methods and conduct a comparative study on the results for our solution. The dataset will be publicly available along with this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豪号发布了新的文献求助10
1秒前
独摇之完成签到,获得积分10
1秒前
魏106047完成签到,获得积分10
2秒前
tg2024完成签到,获得积分10
2秒前
犹豫梦旋完成签到,获得积分10
2秒前
大侠完成签到,获得积分10
2秒前
所所应助Jason-1024采纳,获得10
2秒前
今后应助平常的仙人掌采纳,获得10
3秒前
4秒前
4秒前
4秒前
巧克力张张包完成签到,获得积分10
5秒前
eternity136应助chen1999采纳,获得10
5秒前
5秒前
Apple完成签到,获得积分10
7秒前
8秒前
8秒前
史子轩发布了新的文献求助10
9秒前
11秒前
JamesPei应助nyfz2002采纳,获得10
11秒前
睡觉晒太阳应助问问问采纳,获得10
12秒前
霸气的念云完成签到,获得积分10
12秒前
达不刘发布了新的文献求助30
13秒前
淡然智宸完成签到,获得积分10
13秒前
conanyangqun完成签到,获得积分10
13秒前
清爽盼秋完成签到,获得积分10
13秒前
Jason-1024发布了新的文献求助10
14秒前
yjn完成签到,获得积分10
15秒前
断鸿完成签到 ,获得积分10
15秒前
qiqiqiqiqi完成签到 ,获得积分10
15秒前
chen1999完成签到,获得积分10
16秒前
NorthWang完成签到,获得积分10
16秒前
17秒前
春色未软旧苔痕完成签到 ,获得积分10
17秒前
自信的海燕完成签到,获得积分10
18秒前
大强完成签到,获得积分10
19秒前
苹果听枫完成签到,获得积分10
20秒前
Kay76完成签到,获得积分10
20秒前
yinian完成签到 ,获得积分10
20秒前
朱妮妮完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784882
关于积分的说明 7769151
捐赠科研通 2440425
什么是DOI,文献DOI怎么找? 1297383
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792