Recent Progresses in Machine Learning Assisted Raman Spectroscopy

拉曼光谱 光谱学 工程物理 材料科学 光电子学 纳米技术 物理 光学 工程类 量子力学
作者
Yaping Qi,Dan Hu,Yucheng Jiang,Zhenping Wu,Ming Zheng,Esther Xinyi Chen,Yong Liang,Mohammad A. Sadi,Kang Zhang,Yong P. Chen
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:11 (14) 被引量:132
标识
DOI:10.1002/adom.202203104
摘要

With the development of Raman spectroscopy and the expansion of its application domains, conventional methods for spectral data analysis have manifested many limitations. Exploring new approaches to facilitate Raman spectroscopy and analysis has become an area of intensifying focus for research. It has been demonstrated that machine learning techniques can more efficiently extract valuable information from spectral data, creating unprecedented opportunities for analytical science. This paper outlines traditional and more recently developed statistical methods that are commonly used in machine learning (ML) and ML-algorithms for different Raman spectroscopy-based classification and recognition applications. The methods include Principal Component Analysis, K-Nearest Neighbor, Random Forest, and Support Vector Machine, as well as neural network-based deep learning algorithms such as Artificial Neural Networks, Convolutional Neural Networks, etc. The bulk of the review is dedicated to the research advances in machine learning applied to Raman spectroscopy from several fields, including material science, biomedical applications, food science, and others, which reached impressive levels of analytical accuracy. The combination of Raman spectroscopy and machine learning offers unprecedented opportunities to achieve high throughput and fast identification in many of these application fields. The limitations of current studies are also discussed and perspectives on future research are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaititongg发布了新的文献求助10
刚刚
刚刚
烂漫煎饼发布了新的文献求助10
刚刚
JY发布了新的文献求助10
1秒前
unflycn完成签到,获得积分10
2秒前
顺心的翠丝完成签到 ,获得积分10
2秒前
陈明娃完成签到,获得积分10
3秒前
Zz完成签到,获得积分10
3秒前
飞0802完成签到,获得积分10
3秒前
斯文败类应助瑾辰采纳,获得10
4秒前
炙热的雨双完成签到 ,获得积分10
4秒前
大海之滨完成签到,获得积分10
4秒前
健忘鞋垫完成签到,获得积分10
5秒前
崔尔蓉完成签到,获得积分10
5秒前
6秒前
天天发布了新的文献求助10
6秒前
6秒前
6秒前
钟馗完成签到,获得积分20
6秒前
6秒前
红与黑完成签到,获得积分10
7秒前
baolipao完成签到,获得积分10
7秒前
tianchen完成签到 ,获得积分10
7秒前
无死何能生新颜完成签到,获得积分10
7秒前
喜悦的秋柔完成签到,获得积分10
7秒前
简单的冬瓜完成签到,获得积分10
8秒前
wwwwppp完成签到,获得积分10
9秒前
暮夕梧桐完成签到,获得积分10
10秒前
yang_keai完成签到,获得积分10
10秒前
WEIDERR完成签到,获得积分10
10秒前
浮游应助ao采纳,获得10
11秒前
chlc6973完成签到,获得积分10
11秒前
lin完成签到,获得积分10
11秒前
求大佬救救我呜呜呜完成签到,获得积分10
12秒前
现代的芹完成签到,获得积分10
12秒前
JY完成签到,获得积分10
13秒前
ice完成签到 ,获得积分10
13秒前
WEIDERR发布了新的文献求助10
13秒前
杨冰完成签到,获得积分10
14秒前
shezhinicheng完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349