Recent Progresses in Machine Learning Assisted Raman Spectroscopy

拉曼光谱 光谱学 工程物理 材料科学 光电子学 纳米技术 物理 光学 工程类 量子力学
作者
Yaping Qi,Dan Hu,Yucheng Jiang,Zhenping Wu,Ming Zheng,Esther Xinyi Chen,Yong Liang,Mohammad A. Sadi,Kang Zhang,Yong P. Chen
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:11 (14) 被引量:132
标识
DOI:10.1002/adom.202203104
摘要

With the development of Raman spectroscopy and the expansion of its application domains, conventional methods for spectral data analysis have manifested many limitations. Exploring new approaches to facilitate Raman spectroscopy and analysis has become an area of intensifying focus for research. It has been demonstrated that machine learning techniques can more efficiently extract valuable information from spectral data, creating unprecedented opportunities for analytical science. This paper outlines traditional and more recently developed statistical methods that are commonly used in machine learning (ML) and ML-algorithms for different Raman spectroscopy-based classification and recognition applications. The methods include Principal Component Analysis, K-Nearest Neighbor, Random Forest, and Support Vector Machine, as well as neural network-based deep learning algorithms such as Artificial Neural Networks, Convolutional Neural Networks, etc. The bulk of the review is dedicated to the research advances in machine learning applied to Raman spectroscopy from several fields, including material science, biomedical applications, food science, and others, which reached impressive levels of analytical accuracy. The combination of Raman spectroscopy and machine learning offers unprecedented opportunities to achieve high throughput and fast identification in many of these application fields. The limitations of current studies are also discussed and perspectives on future research are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsy完成签到,获得积分10
刚刚
今夜明珠色应助Liu采纳,获得30
刚刚
乐尤琉完成签到,获得积分10
1秒前
1秒前
小蘑菇应助党阳阳采纳,获得10
1秒前
2秒前
2秒前
2秒前
史克珍香完成签到 ,获得积分10
3秒前
AIDA完成签到,获得积分10
3秒前
斯文败类应助Guzaiya采纳,获得10
4秒前
gavin完成签到 ,获得积分10
5秒前
飞快的从彤完成签到 ,获得积分20
5秒前
茶米发布了新的文献求助10
6秒前
脱羰甲酸发布了新的文献求助10
7秒前
hhdegf发布了新的文献求助10
9秒前
9秒前
科目三应助ldp采纳,获得10
10秒前
研友_8o5V2n完成签到,获得积分10
11秒前
溜溜梅完成签到,获得积分10
11秒前
花生小铺主人完成签到,获得积分10
12秒前
斯文败类应助llll采纳,获得10
12秒前
12秒前
12秒前
Gumayusi发布了新的文献求助10
13秒前
wxy发布了新的文献求助10
13秒前
Carmen完成签到,获得积分10
14秒前
14秒前
李爱国应助luck采纳,获得10
15秒前
15秒前
细腻荔枝完成签到 ,获得积分10
16秒前
嘟噜嘟噜应助龙王使采纳,获得10
17秒前
17秒前
17秒前
LLX123发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
wxy发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594