Recent Progresses in Machine Learning Assisted Raman Spectroscopy

人工智能 拉曼光谱 机器学习 人工神经网络 计算机科学 卷积神经网络 支持向量机 深度学习 鉴定(生物学) 随机森林 材料科学 纳米技术 物理 光学 植物 生物
作者
Yaping Qi,Dan Hu,Yucheng Jiang,Zhenping Wu,Ming Zheng,Esther Xinyi Chen,Yong Liang,Mohammad A. Sadi,Kang Zhang,Yong P. Chen
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:11 (14) 被引量:66
标识
DOI:10.1002/adom.202203104
摘要

Abstract With the development of Raman spectroscopy and the expansion of its application domains, conventional methods for spectral data analysis have manifested many limitations. Exploring new approaches to facilitate Raman spectroscopy and analysis has become an area of intensifying focus for research. It has been demonstrated that machine learning techniques can more efficiently extract valuable information from spectral data, creating unprecedented opportunities for analytical science. This paper outlines traditional and more recently developed statistical methods that are commonly used in machine learning (ML) and ML‐algorithms for different Raman spectroscopy‐based classification and recognition applications. The methods include Principal Component Analysis, K‐Nearest Neighbor, Random Forest, and Support Vector Machine, as well as neural network‐based deep learning algorithms such as Artificial Neural Networks, Convolutional Neural Networks, etc. The bulk of the review is dedicated to the research advances in machine learning applied to Raman spectroscopy from several fields, including material science, biomedical applications, food science, and others, which reached impressive levels of analytical accuracy. The combination of Raman spectroscopy and machine learning offers unprecedented opportunities to achieve high throughput and fast identification in many of these application fields. The limitations of current studies are also discussed and perspectives on future research are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爪爪发布了新的文献求助10
1秒前
三张完成签到 ,获得积分10
1秒前
3秒前
3秒前
4秒前
欧阳发布了新的文献求助20
6秒前
杨杨杨发布了新的文献求助10
8秒前
活力立诚完成签到,获得积分10
9秒前
蓝风铃完成签到 ,获得积分10
9秒前
马香芦完成签到,获得积分10
10秒前
细心的山槐完成签到,获得积分20
10秒前
小黑猫完成签到,获得积分10
10秒前
李健应助无限秋天采纳,获得10
12秒前
12秒前
12秒前
丘比特应助华某采纳,获得10
13秒前
14秒前
思源应助活力立诚采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
15秒前
wsx4321应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
实验好难应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
杨杨杨完成签到,获得积分10
15秒前
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
16秒前
oooh应助科研通管家采纳,获得50
16秒前
Akim应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
实验好难应助科研通管家采纳,获得10
16秒前
16秒前
pluto应助科研通管家采纳,获得10
16秒前
劲秉应助科研通管家采纳,获得100
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093