瑞芬太尼
异丙酚
脑电双频指数
强化学习
麻醉
计算机科学
控制器(灌溉)
过程(计算)
人工智能
医学
农学
生物
操作系统
作者
Won Joon Yun,MyungJae Shin,Soyi Jung,JeongGil Ko,Hyung‐Chul Lee,Joongheon Kim
标识
DOI:10.1016/j.compbiomed.2023.106739
摘要
In this work, we present a deep reinforcement learning-based approach as a baseline system for autonomous propofol infusion control. Specifically, design an environment for simulating the possible conditions of a target patient based on input demographic data and design our reinforcement learning model-based system so that it effectively makes predictions on the proper level of propofol infusion to maintain stable anesthesia even under dynamic conditions that can affect the decision-making process, such as the manual control of remifentanil by anesthesiologists and the varying patient conditions under anesthesia. Through an extensive set of evaluations using patient data from 3000 subjects, we show that the proposed method results in stabilization in the anesthesia state, by managing the bispectral index (BIS) and effect-site concentration for a patient showing varying conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI