An approach to extracting graph kernel features from functional brain networks and its applications to the analysis of the noisy EEG signals

计算机科学 脑电图 模式识别(心理学) 人工智能 图形 核(代数) 数学 理论计算机科学 神经科学 组合数学 心理学
作者
Yiran Peng,Taorong Qiu,Lingling Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104269-104269 被引量:5
标识
DOI:10.1016/j.bspc.2022.104269
摘要

Since electroencephalographic data (EEG) usually carries a certain amount of noise, it is important to study a method that can propose an effective noise-adaptive feature from EEG signals and can be effectively used for problem-solving. Firstly, to address the problem that the application of noisy EEG in problem-solving based on functional brain networks is significantly worse, we study the extraction of global topological features, called graph kernel features, from functional brain networks with better noise immunity, and propose a method for extracting graph kernel features from networks based on neighborhood subgraph pairwise distances. Secondly, to address the problem of huge data of graph kernel features proposed from functional brain networks, dimensionality reduction of graph kernel features based on kernel principal component analysis is proposed. Finally, to verify that the graph kernel features can not only be effectively used for problem-solving, but also have good noise immunity, the research on fatigue driving and emotion recognition based on the graph kernel feature extraction side of the functional brain network is carried out, and the corresponding fatigue driving state recognition model and emotion state recognition model is constructed. By testing the simulated EEG noisy data on the real fatigue driving dataset and the publicly available emotion recognition dataset Seed with different methods, it is verified that the graph kernel features are effective in classifying the noisy EEG data and have a good generalization ability for different noises. • An approach of extracting the global topology features. • The extracted features have better adaptability to noisy environments. • The features provides some guarantees for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxmu6322完成签到,获得积分10
2秒前
熊雅完成签到,获得积分10
2秒前
2秒前
小z完成签到 ,获得积分10
2秒前
15919229415完成签到,获得积分10
3秒前
不能当饭吃完成签到,获得积分10
3秒前
传统的复天完成签到,获得积分10
4秒前
sin完成签到,获得积分10
5秒前
小邸发布了新的文献求助10
5秒前
5秒前
柠檬加盐发布了新的文献求助10
6秒前
今后应助xiuxiu125采纳,获得10
7秒前
乐观健柏完成签到,获得积分10
8秒前
WHB完成签到,获得积分10
9秒前
hello发布了新的文献求助10
9秒前
喜悦的天钰完成签到,获得积分10
11秒前
NexusExplorer应助柠檬加盐采纳,获得10
12秒前
yu完成签到 ,获得积分10
12秒前
eazin完成签到 ,获得积分10
13秒前
斯文败类应助dll采纳,获得10
14秒前
14秒前
邱佩群完成签到 ,获得积分10
16秒前
16秒前
hello完成签到,获得积分20
17秒前
犹豫的初丹完成签到,获得积分10
18秒前
Wang发布了新的文献求助10
18秒前
fan051500完成签到,获得积分10
19秒前
张天宝真的爱科研完成签到,获得积分10
20秒前
killy完成签到 ,获得积分10
22秒前
柠檬加盐完成签到,获得积分10
22秒前
胡杨树2006完成签到,获得积分10
23秒前
24秒前
dll完成签到,获得积分10
24秒前
成就傲芙完成签到,获得积分10
25秒前
Kavin完成签到,获得积分10
25秒前
娜娜完成签到 ,获得积分10
26秒前
研友_ndvmV8完成签到,获得积分10
26秒前
耍酷的白梦完成签到,获得积分10
27秒前
鞠晓蕾完成签到,获得积分10
28秒前
呜呼完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294178
求助须知:如何正确求助?哪些是违规求助? 4444140
关于积分的说明 13832167
捐赠科研通 4328118
什么是DOI,文献DOI怎么找? 2375950
邀请新用户注册赠送积分活动 1371278
关于科研通互助平台的介绍 1336386