An approach to extracting graph kernel features from functional brain networks and its applications to the analysis of the noisy EEG signals

计算机科学 脑电图 模式识别(心理学) 人工智能 图形 核(代数) 数学 理论计算机科学 神经科学 组合数学 心理学
作者
Yiran Peng,Taorong Qiu,Lingling Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104269-104269 被引量:2
标识
DOI:10.1016/j.bspc.2022.104269
摘要

Since electroencephalographic data (EEG) usually carries a certain amount of noise, it is important to study a method that can propose an effective noise-adaptive feature from EEG signals and can be effectively used for problem-solving. Firstly, to address the problem that the application of noisy EEG in problem-solving based on functional brain networks is significantly worse, we study the extraction of global topological features, called graph kernel features, from functional brain networks with better noise immunity, and propose a method for extracting graph kernel features from networks based on neighborhood subgraph pairwise distances. Secondly, to address the problem of huge data of graph kernel features proposed from functional brain networks, dimensionality reduction of graph kernel features based on kernel principal component analysis is proposed. Finally, to verify that the graph kernel features can not only be effectively used for problem-solving, but also have good noise immunity, the research on fatigue driving and emotion recognition based on the graph kernel feature extraction side of the functional brain network is carried out, and the corresponding fatigue driving state recognition model and emotion state recognition model is constructed. By testing the simulated EEG noisy data on the real fatigue driving dataset and the publicly available emotion recognition dataset Seed with different methods, it is verified that the graph kernel features are effective in classifying the noisy EEG data and have a good generalization ability for different noises. • An approach of extracting the global topology features. • The extracted features have better adaptability to noisy environments. • The features provides some guarantees for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waerteyang发布了新的文献求助10
刚刚
4秒前
发发完成签到,获得积分10
5秒前
北辰以德发布了新的文献求助10
8秒前
诚心靳完成签到,获得积分10
8秒前
9秒前
CSUST科研一哥应助yin采纳,获得10
11秒前
CodeCraft应助yin采纳,获得10
11秒前
所所应助yin采纳,获得10
12秒前
务实的西牛应助yin采纳,获得10
12秒前
科研通AI2S应助yin采纳,获得10
12秒前
爆米花应助yin采纳,获得10
12秒前
眉间一把刀完成签到,获得积分10
13秒前
我是老大应助waerteyang采纳,获得10
13秒前
xiaofei666举报能干的芾求助涉嫌违规
16秒前
17秒前
17秒前
烟花应助超越好帅采纳,获得10
19秒前
21秒前
田田发布了新的文献求助10
21秒前
23秒前
gds完成签到,获得积分10
23秒前
23秒前
25秒前
27秒前
hegui发布了新的文献求助10
27秒前
SciGPT应助爱读文献的小张采纳,获得10
28秒前
Arjun发布了新的文献求助10
29秒前
max2022发布了新的文献求助10
29秒前
xiaofei666举报健忘飞风求助涉嫌违规
29秒前
31秒前
32秒前
善学以致用应助LHYX采纳,获得10
33秒前
xiaofei666应助鸡蛋饼波比采纳,获得50
33秒前
yelis完成签到 ,获得积分10
35秒前
36秒前
梦幻两点半完成签到,获得积分20
36秒前
37秒前
cctv18给zuco的求助进行了留言
37秒前
大树发布了新的文献求助10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243735
求助须知:如何正确求助?哪些是违规求助? 2887552
关于积分的说明 8249110
捐赠科研通 2556261
什么是DOI,文献DOI怎么找? 1384361
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625776