An approach to extracting graph kernel features from functional brain networks and its applications to the analysis of the noisy EEG signals

计算机科学 脑电图 模式识别(心理学) 人工智能 图形 核(代数) 数学 理论计算机科学 神经科学 组合数学 心理学
作者
Yiran Peng,Taorong Qiu,Lingling Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104269-104269 被引量:5
标识
DOI:10.1016/j.bspc.2022.104269
摘要

Since electroencephalographic data (EEG) usually carries a certain amount of noise, it is important to study a method that can propose an effective noise-adaptive feature from EEG signals and can be effectively used for problem-solving. Firstly, to address the problem that the application of noisy EEG in problem-solving based on functional brain networks is significantly worse, we study the extraction of global topological features, called graph kernel features, from functional brain networks with better noise immunity, and propose a method for extracting graph kernel features from networks based on neighborhood subgraph pairwise distances. Secondly, to address the problem of huge data of graph kernel features proposed from functional brain networks, dimensionality reduction of graph kernel features based on kernel principal component analysis is proposed. Finally, to verify that the graph kernel features can not only be effectively used for problem-solving, but also have good noise immunity, the research on fatigue driving and emotion recognition based on the graph kernel feature extraction side of the functional brain network is carried out, and the corresponding fatigue driving state recognition model and emotion state recognition model is constructed. By testing the simulated EEG noisy data on the real fatigue driving dataset and the publicly available emotion recognition dataset Seed with different methods, it is verified that the graph kernel features are effective in classifying the noisy EEG data and have a good generalization ability for different noises. • An approach of extracting the global topology features. • The extracted features have better adaptability to noisy environments. • The features provides some guarantees for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000完成签到,获得积分20
刚刚
CodeCraft应助白衣轻叹采纳,获得10
刚刚
杜七七发布了新的文献求助10
刚刚
AH完成签到,获得积分20
1秒前
1秒前
aq发布了新的文献求助10
1秒前
1秒前
肖守玉完成签到,获得积分10
1秒前
邓佳鑫Alan发布了新的文献求助10
1秒前
2秒前
岗岗发布了新的文献求助10
2秒前
不安红豆完成签到,获得积分10
2秒前
appa发布了新的文献求助10
2秒前
3秒前
木心应助风清扬采纳,获得50
3秒前
吴一一发布了新的文献求助10
3秒前
4秒前
4秒前
Helix_Elaina发布了新的文献求助10
4秒前
sakuma完成签到,获得积分10
4秒前
王欧尼完成签到,获得积分10
5秒前
忽悠老羊完成签到 ,获得积分10
5秒前
5秒前
光123完成签到 ,获得积分10
5秒前
明理采珊完成签到,获得积分10
5秒前
YU完成签到,获得积分10
6秒前
白青发布了新的文献求助10
6秒前
喜悦向日葵完成签到 ,获得积分10
6秒前
6秒前
wzg666完成签到,获得积分10
7秒前
xsss完成签到,获得积分10
7秒前
娃哈哈发布了新的文献求助10
7秒前
斯文败类应助zhuzhu采纳,获得10
7秒前
默默的橘子完成签到 ,获得积分10
7秒前
CodeCraft应助心灵美采纳,获得30
8秒前
土豆子完成签到,获得积分10
8秒前
hhhhh应助娃娃鱼采纳,获得10
9秒前
莫失莫忘发布了新的文献求助10
9秒前
张子文发布了新的文献求助10
9秒前
曾经念真给lbx的求助进行了留言
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582