A CT-based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 表皮生长因子受体 肿瘤科 头颈部癌 接收机工作特性 内科学 突变 曲线下面积 放射科 癌症 基因 生物 生物化学
作者
Ying-mei Zheng,Jing Pang,Zong-jing Liu,Ming-gang Yuan,Jie Li,Zengjie Wu,Yan Jiang,Cheng Dong
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 628-638 被引量:7
标识
DOI:10.1016/j.acra.2023.06.026
摘要

Rationale and Objectives

Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict EGFR mutation status of HNSCC.

Materials and Methods

A total of 300 HNSCC patients who underwent CECT scans were enrolled in this study. Participants from two hospitals were separated into a training set (n = 200, 56 EGFR-negative and 144 EGFR-positive) from one hospital and an external test set from the other hospital (n = 100, 37 EGFR-negative and 63 EGFR-positive). The least absolute shrinkage and selection operator method was used to select the key features from CECT-based manually extracted radiomics (MER) features and features automatically extracted using a deep learning model (DL, extracted using a GoogLeNet model). The selected independent clinical factors, MER features, and DL features were then combined to construct a DLRN. The DLRN's performance was evaluated using receiver operating characteristics curves.

Results

Five MER and six DL features were finally chosen. The DLRN, which includes "gender" and "necrotic areas," along with the selected features, predicted EGFR mutation status of HNSCC (EGFR-negative vs. positive) well in both the training (area under the curve [AUC], 0.901) and test (AUC, 0.875) sets.

Conclusion

A DLRN using CECT was built to predict EGFR mutation in HNSCC. The model showed high predictive ability and may aid in treatment selection and patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HJJ完成签到 ,获得积分10
刚刚
李李完成签到,获得积分10
刚刚
1秒前
开朗亦绿发布了新的文献求助10
1秒前
Ava应助小鸟采纳,获得10
1秒前
zjj完成签到,获得积分10
1秒前
科研探索者完成签到,获得积分10
1秒前
1秒前
summerlore发布了新的文献求助20
2秒前
2秒前
wanci应助宋云媚采纳,获得10
3秒前
酷波er应助鞘皮采纳,获得20
3秒前
4秒前
蒲公英的约定完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
急于学习发布了新的文献求助10
5秒前
小梦完成签到,获得积分10
5秒前
科研通AI2S应助祥子的骆驼采纳,获得10
5秒前
caoyuya123完成签到 ,获得积分10
5秒前
东都哈士奇完成签到,获得积分10
6秒前
gigi完成签到 ,获得积分10
6秒前
bmhs2017应助MarcoPolo采纳,获得10
6秒前
7秒前
搜集达人应助微笑的雁菱采纳,获得10
7秒前
清风发布了新的文献求助10
7秒前
curtisness应助zsl采纳,获得10
8秒前
hhgcc完成签到,获得积分10
8秒前
科研通AI6应助Masiying采纳,获得10
8秒前
夏小蘩完成签到,获得积分10
8秒前
9秒前
蔡佩翰发布了新的文献求助10
9秒前
9秒前
安详的沛菡完成签到,获得积分10
9秒前
赤江之木完成签到 ,获得积分10
9秒前
Akim应助tikka采纳,获得10
9秒前
柴ZL完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563