A CT-based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 表皮生长因子受体 肿瘤科 头颈部癌 接收机工作特性 内科学 突变 曲线下面积 放射科 癌症 基因 生物 生物化学
作者
Ying-mei Zheng,Jing Pang,Zong-jing Liu,Ming-gang Yuan,Jie Li,Zengjie Wu,Yan Jiang,Cheng Dong
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 628-638 被引量:3
标识
DOI:10.1016/j.acra.2023.06.026
摘要

Rationale and Objectives

Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict EGFR mutation status of HNSCC.

Materials and Methods

A total of 300 HNSCC patients who underwent CECT scans were enrolled in this study. Participants from two hospitals were separated into a training set (n = 200, 56 EGFR-negative and 144 EGFR-positive) from one hospital and an external test set from the other hospital (n = 100, 37 EGFR-negative and 63 EGFR-positive). The least absolute shrinkage and selection operator method was used to select the key features from CECT-based manually extracted radiomics (MER) features and features automatically extracted using a deep learning model (DL, extracted using a GoogLeNet model). The selected independent clinical factors, MER features, and DL features were then combined to construct a DLRN. The DLRN's performance was evaluated using receiver operating characteristics curves.

Results

Five MER and six DL features were finally chosen. The DLRN, which includes "gender" and "necrotic areas," along with the selected features, predicted EGFR mutation status of HNSCC (EGFR-negative vs. positive) well in both the training (area under the curve [AUC], 0.901) and test (AUC, 0.875) sets.

Conclusion

A DLRN using CECT was built to predict EGFR mutation in HNSCC. The model showed high predictive ability and may aid in treatment selection and patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EED发布了新的文献求助10
2秒前
如意板栗发布了新的文献求助30
2秒前
MOMO完成签到,获得积分10
2秒前
11号楼203完成签到,获得积分10
3秒前
苏有朋完成签到,获得积分10
4秒前
思源应助踏实星星采纳,获得10
4秒前
5秒前
CodeCraft应助MOMO采纳,获得10
6秒前
6秒前
小蘑菇应助lkk采纳,获得10
7秒前
Echo发布了新的文献求助10
7秒前
Fanny_825完成签到,获得积分10
7秒前
7秒前
7秒前
fanyueyue应助wukong采纳,获得10
8秒前
8秒前
充电宝应助寒天帝采纳,获得10
9秒前
苹果花完成签到,获得积分10
10秒前
NINI发布了新的文献求助10
10秒前
tuyoyo发布了新的文献求助10
11秒前
11秒前
11秒前
啊啊啊啊发布了新的文献求助10
12秒前
roking完成签到,获得积分10
12秒前
13秒前
Glory完成签到,获得积分10
13秒前
13秒前
小徐医生完成签到,获得积分10
15秒前
15秒前
慕青应助IR1S0110采纳,获得10
15秒前
踏实星星给踏实星星的求助进行了留言
15秒前
大个应助lang采纳,获得10
16秒前
16秒前
李健应助烫个麻辣烫采纳,获得10
17秒前
17秒前
万能图书馆应助yuyu采纳,获得10
18秒前
18秒前
桐桐应助min采纳,获得10
18秒前
PAD发布了新的文献求助30
19秒前
星辰大海应助司空蓝采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496