A CT-based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 表皮生长因子受体 肿瘤科 头颈部癌 接收机工作特性 内科学 突变 曲线下面积 放射科 癌症 基因 生物 生物化学
作者
Ying-Mei Zheng,Jing Pang,Zong-jing Liu,Ming-gang Yuan,Jie Li,Zengjie Wu,Yan Jiang,Cheng Dong
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 628-638 被引量:2
标识
DOI:10.1016/j.acra.2023.06.026
摘要

Rationale and Objectives

Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict EGFR mutation status of HNSCC.

Materials and Methods

A total of 300 HNSCC patients who underwent CECT scans were enrolled in this study. Participants from two hospitals were separated into a training set (n = 200, 56 EGFR-negative and 144 EGFR-positive) from one hospital and an external test set from the other hospital (n = 100, 37 EGFR-negative and 63 EGFR-positive). The least absolute shrinkage and selection operator method was used to select the key features from CECT-based manually extracted radiomics (MER) features and features automatically extracted using a deep learning model (DL, extracted using a GoogLeNet model). The selected independent clinical factors, MER features, and DL features were then combined to construct a DLRN. The DLRN's performance was evaluated using receiver operating characteristics curves.

Results

Five MER and six DL features were finally chosen. The DLRN, which includes "gender" and "necrotic areas," along with the selected features, predicted EGFR mutation status of HNSCC (EGFR-negative vs. positive) well in both the training (area under the curve [AUC], 0.901) and test (AUC, 0.875) sets.

Conclusion

A DLRN using CECT was built to predict EGFR mutation in HNSCC. The model showed high predictive ability and may aid in treatment selection and patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南絮发布了新的文献求助10
2秒前
霜月冰完成签到,获得积分20
2秒前
2秒前
Sunset完成签到 ,获得积分10
3秒前
3秒前
胡桃夹馍完成签到,获得积分10
4秒前
6秒前
mm发布了新的文献求助10
6秒前
vincent发布了新的文献求助10
8秒前
科研通AI2S应助GET采纳,获得10
8秒前
小蘑菇应助tamsin采纳,获得10
9秒前
9秒前
9秒前
Krim完成签到 ,获得积分10
10秒前
10秒前
11秒前
無屿啊-完成签到,获得积分20
11秒前
小犁牛完成签到 ,获得积分10
13秒前
科研菜鸟发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
threewei发布了新的文献求助10
17秒前
周芷卉发布了新的文献求助10
19秒前
桐桐应助thousandlong采纳,获得10
19秒前
汉堡包应助马某某某某某采纳,获得10
20秒前
科研菜鸟完成签到,获得积分10
21秒前
淡淡乐巧完成签到 ,获得积分10
21秒前
22秒前
xzy998应助哈哈采纳,获得10
22秒前
LKX心完成签到 ,获得积分10
23秒前
iNk应助Kevin采纳,获得10
24秒前
思源应助杰森斯坦虎采纳,获得10
24秒前
24秒前
25秒前
xiaofu完成签到,获得积分10
26秒前
27秒前
小任完成签到,获得积分20
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079