Automated Classification of Cognitive Decline and Probable Alzheimer's Dementia Across Multiple Speech and Language Domains

痴呆 认知 认知功能衰退 心理学 随机森林 听力学 分类器(UML) 认知心理学 人工智能 计算机科学 医学 疾病 神经科学 病理
作者
Rui He,Kayla Chapin,Jalal Al‐Tamimi,Núria Bel,Marta Marquié,Maitée Rosende‐Roca,Vanesa Pytel,Juan Pablo Tartari,Montserrat Alegret,Ángela Sanabria,Agustı́n Ruiz,Merçé Boada,Sergi Valero,Wolfram Hinzen
出处
期刊:American Journal of Speech-language Pathology [American Speech-Language-Hearing Association]
卷期号:32 (5): 2075-2086 被引量:14
标识
DOI:10.1044/2023_ajslp-22-00403
摘要

Decline in language has emerged as a new potential biomarker for the early detection of Alzheimer's disease (AD). It remains unclear how sensitive language measures are across different tasks, language domains, and languages, and to what extent changes can be reliably detected in early stages such as subjective cognitive decline (SCD) and mild cognitive impairment (MCI).Using a scene construction task for speech elicitation in a new Spanish/Catalan speaking cohort (N = 119), we automatically extracted features across seven domains, three acoustic (spectral, cepstral, and voice quality), one prosodic, and three from text (morpholexical, semantic, and syntactic). They were forwarded to a random forest classifier to evaluate the discriminability of participants with probable AD dementia, amnestic and nonamnestic MCI, SCD, and cognitively healthy controls. Repeated-measures analyses of variance and paired-samples Wilcoxon signed-ranks test were used to assess whether and how performance differs significantly across groups and linguistic domains.The performance scores of the machine learning classifier were generally satisfactorily high, with the highest scores over .9. Model performance was significantly different for linguistic domains (p < .001), and speech versus text (p = .043), with speech features outperforming textual features, and voice quality performing best. High diagnostic classification accuracies were seen even within both cognitively healthy (controls vs. SCD) and MCI (amnestic and nonamnestic) groups.Speech-based machine learning is powerful in detecting cognitive decline and probable AD dementia across a range of different feature domains, though important differences exist between these domains as well.https://doi.org/10.23641/asha.23699733.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zayne完成签到 ,获得积分10
1秒前
许中原完成签到,获得积分10
1秒前
芝麻发布了新的文献求助10
1秒前
1秒前
LL发布了新的文献求助10
1秒前
介电发nature完成签到,获得积分10
2秒前
汉堡包应助西西采纳,获得10
4秒前
科研通AI5应助高木同学采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助sun采纳,获得10
4秒前
完美世界应助六个核桃采纳,获得10
5秒前
5秒前
乐观寻雪发布了新的文献求助10
5秒前
整齐的摩托完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
SEVENTEEN发布了新的文献求助10
7秒前
今后应助清爽子默采纳,获得10
7秒前
英姑应助崔杨采纳,获得10
7秒前
加勒比海带丝完成签到,获得积分10
7秒前
可爱的函函应助包子采纳,获得10
8秒前
ddl7发布了新的文献求助30
8秒前
emma关注了科研通微信公众号
10秒前
典雅雁梅发布了新的文献求助10
10秒前
10秒前
10秒前
蒺藜完成签到 ,获得积分10
11秒前
微笑的兔子完成签到,获得积分10
11秒前
112233发布了新的文献求助10
11秒前
11秒前
11秒前
wjm完成签到,获得积分10
11秒前
鹿子发布了新的文献求助10
12秒前
Simlove发布了新的文献求助10
12秒前
15秒前
15秒前
清秀白梦发布了新的文献求助10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476452
求助须知:如何正确求助?哪些是违规求助? 3068067
关于积分的说明 9106438
捐赠科研通 2759609
什么是DOI,文献DOI怎么找? 1514156
邀请新用户注册赠送积分活动 700093
科研通“疑难数据库(出版商)”最低求助积分说明 699284