Crude oil price forecasting with machine learning and Google search data: An accuracy comparison of single-model versus multiple-model

计算机科学 原油 机器学习 人工智能 格兰杰因果关系 数据挖掘 石油工程 工程类
作者
Quande Qin,Zhaorong Huang,Zhihao Zhou,Chen Chen,Rui Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106266-106266 被引量:16
标识
DOI:10.1016/j.engappai.2023.106266
摘要

Recent research has shown that introducing online data can significantly improve forecasting ability. This study considers several popular single-model machine learning methods and a stacking multiple-model ensemble learning strategy. These are used with online data from Google Trends to forecast crude oil prices. The study first selects dozens of alternative Google Trends, which may capture crude oil price fluctuations. A co-integration test and Granger causality analysis are used to investigate the effect of Google Trends on crude oil prices. Then, the multiple-model methods are compared with several popular single-model machine learning methods that are used to forecast crude oil prices. These methods are used with Google Trends that have a significant relationship with the crude oil price. Experimental results indicate that introducing Google Trends can improve the forecasting performance; multiple-model methods also outperform several popular single-model machine learning methods in terms of prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助XIZHENG_采纳,获得10
刚刚
SciGPT应助小飞爱科研采纳,获得10
刚刚
天才小榴莲完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
Fred完成签到,获得积分10
1秒前
cici完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
烟花应助wzc采纳,获得10
1秒前
笨笨的誉完成签到,获得积分10
2秒前
yanzi发布了新的文献求助10
2秒前
manyi1972完成签到,获得积分10
2秒前
热爱生活发布了新的文献求助10
2秒前
Akim应助Skrkk采纳,获得10
3秒前
lokiyyy发布了新的文献求助10
3秒前
泥蝶完成签到 ,获得积分10
3秒前
kate发布了新的文献求助10
3秒前
3秒前
3秒前
mm应助达不溜的话语权采纳,获得10
3秒前
大个应助淡然的语山采纳,获得10
4秒前
4秒前
4秒前
Derik发布了新的文献求助10
4秒前
Derik发布了新的文献求助10
4秒前
5秒前
快快跑咯完成签到,获得积分10
5秒前
5秒前
所所应助重重采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
5秒前
孤单心事完成签到,获得积分10
5秒前
清蒸鱼发布了新的文献求助10
5秒前
6秒前
学术辣鸡完成签到,获得积分10
6秒前
我是老大应助清爽的采萱采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661318
求助须知:如何正确求助?哪些是违规求助? 4838264
关于积分的说明 15095308
捐赠科研通 4820082
什么是DOI,文献DOI怎么找? 2579723
邀请新用户注册赠送积分活动 1534013
关于科研通互助平台的介绍 1492767