RetroSynX: A retrosynthetic analysis framework using hybrid reaction templates and group contribution-based thermodynamic models

回顾性分析 模板 化学信息学 计算机科学 化学 数据挖掘 生化工程 工程类 程序设计语言 全合成 计算化学 有机化学
作者
Wenlong Wang,Qilei Liu,Lei Zhang,Yachao Dong,Jian Du
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:248: 117208-117208 被引量:9
标识
DOI:10.1016/j.ces.2021.117208
摘要

Organic synthesis plays an essential role in the pharmaceutical industry. The drug synthesis route design is a critical decision step to convert raw materials to drug products. Traditionally, knowledge-based methods are commonly used for the design of the synthesis route. However, this type of method is expensive and time-consuming, which hinders the high-throughput design of the synthesis route. In this article, a retrosynthetic analysis framework is established based on hybird reaction templates and Group Contribution (GC)-based thermodynamic models. First, a hybrid database consisting of partial atom-mapping and full atom-mapping reaction templates is constructed utilizing well-studied organic reactions from literature. Second, numerous virtual reactions are generated from reaction templates with respect to the target molecule, and reaction thermodynamic models based on the GC method are developed to validate the effectiveness of those virtual reactions in a timely fashion. Finally, Breadth-First Search (BFS) algorithm is employed to search candidate retrosynthesis pathways which are thermodynamically feasible. In this procedure, five evaluation criteria are used to identify the top-ranked retrosynthesis pathways through evaluating and optimizing the candidate retrosynthesis pathways, including Fathead Minnow 96-hr LC50 (LC50FM), flash point (Fp), Natural Product-likeness Score (NPScore), Synthesis Accessibility Score (SAScore), and Synthesis Complexity Score (SCScore). A retrosynthetic analysis tool called “RetroSynX” is developed using the proposed framework. With the help of the developed framework and tool, synthesis routes considering thermodynamic feasibility can be obtained. Three case studies involving Aspirin, Ibuprofen and ZatoSetron are presented to highlight the feasibility and reliability of the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助yungu采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
科研通AI6.1应助linhappy采纳,获得10
4秒前
JamesPei应助linhappy采纳,获得10
4秒前
大模型应助linhappy采纳,获得10
4秒前
温柔板凳完成签到,获得积分10
4秒前
科研通AI2S应助linhappy采纳,获得10
4秒前
Hello应助故意的秋烟采纳,获得10
4秒前
共享精神应助linhappy采纳,获得10
5秒前
852应助linhappy采纳,获得10
5秒前
科研通AI6.1应助linhappy采纳,获得10
5秒前
5秒前
terryok完成签到,获得积分10
6秒前
xu关注了科研通微信公众号
7秒前
酒精不能消毒完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
怡然缘分发布了新的文献求助10
9秒前
烟花应助小米采纳,获得10
9秒前
9秒前
医学悍狒完成签到,获得积分10
9秒前
YEYE发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
yungu发布了新的文献求助10
12秒前
我是老大应助JT采纳,获得10
13秒前
13秒前
13秒前
科研通AI6.1应助aa采纳,获得10
13秒前
14秒前
youli发布了新的文献求助10
14秒前
情怀应助xy采纳,获得10
15秒前
15秒前
15秒前
xjz完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761931
求助须知:如何正确求助?哪些是违规求助? 5533128
关于积分的说明 15401477
捐赠科研通 4898183
什么是DOI,文献DOI怎么找? 2634740
邀请新用户注册赠送积分活动 1582897
关于科研通互助平台的介绍 1538134