RetroSynX: A retrosynthetic analysis framework using hybrid reaction templates and group contribution-based thermodynamic models

回顾性分析 模板 化学信息学 计算机科学 化学 数据挖掘 生化工程 工程类 程序设计语言 全合成 计算化学 有机化学
作者
Wenlong Wang,Qilei Liu,Lei Zhang,Yachao Dong,Jian Du
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:248: 117208-117208 被引量:9
标识
DOI:10.1016/j.ces.2021.117208
摘要

Organic synthesis plays an essential role in the pharmaceutical industry. The drug synthesis route design is a critical decision step to convert raw materials to drug products. Traditionally, knowledge-based methods are commonly used for the design of the synthesis route. However, this type of method is expensive and time-consuming, which hinders the high-throughput design of the synthesis route. In this article, a retrosynthetic analysis framework is established based on hybird reaction templates and Group Contribution (GC)-based thermodynamic models. First, a hybrid database consisting of partial atom-mapping and full atom-mapping reaction templates is constructed utilizing well-studied organic reactions from literature. Second, numerous virtual reactions are generated from reaction templates with respect to the target molecule, and reaction thermodynamic models based on the GC method are developed to validate the effectiveness of those virtual reactions in a timely fashion. Finally, Breadth-First Search (BFS) algorithm is employed to search candidate retrosynthesis pathways which are thermodynamically feasible. In this procedure, five evaluation criteria are used to identify the top-ranked retrosynthesis pathways through evaluating and optimizing the candidate retrosynthesis pathways, including Fathead Minnow 96-hr LC50 (LC50FM), flash point (Fp), Natural Product-likeness Score (NPScore), Synthesis Accessibility Score (SAScore), and Synthesis Complexity Score (SCScore). A retrosynthetic analysis tool called “RetroSynX” is developed using the proposed framework. With the help of the developed framework and tool, synthesis routes considering thermodynamic feasibility can be obtained. Three case studies involving Aspirin, Ibuprofen and ZatoSetron are presented to highlight the feasibility and reliability of the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
rong发布了新的文献求助10
3秒前
传奇3应助枕雪听冷冷采纳,获得10
6秒前
英姑应助陈M雯采纳,获得10
7秒前
奖品肉麻膏耶完成签到 ,获得积分10
8秒前
胖达发布了新的文献求助10
8秒前
氧化氢发布了新的文献求助10
9秒前
达克赛德完成签到 ,获得积分10
10秒前
xiaoxie完成签到 ,获得积分10
10秒前
jinzhituoyan完成签到,获得积分10
13秒前
illusion完成签到,获得积分10
13秒前
qqqq_8完成签到,获得积分10
13秒前
胖达完成签到,获得积分10
14秒前
JamesPei应助rong采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
萱1988完成签到,获得积分10
18秒前
君看一叶舟完成签到 ,获得积分10
19秒前
小cc完成签到 ,获得积分10
19秒前
21秒前
深情安青应助大宝蛋白采纳,获得10
21秒前
JACK完成签到,获得积分10
21秒前
22秒前
YeeLeeLee发布了新的文献求助10
22秒前
ysy完成签到,获得积分10
25秒前
Qi完成签到 ,获得积分10
27秒前
大成子完成签到,获得积分10
27秒前
可爱的小树苗完成签到,获得积分10
28秒前
引子完成签到,获得积分10
28秒前
29秒前
wy0409完成签到,获得积分10
31秒前
搜集达人应助包容蛋挞采纳,获得10
31秒前
31秒前
刻苦牛马完成签到 ,获得积分10
31秒前
Aero完成签到,获得积分10
32秒前
33秒前
可靠诗筠完成签到 ,获得积分10
35秒前
wing发布了新的文献求助10
36秒前
炒菜别忘记放颜完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685826
关于积分的说明 14839777
捐赠科研通 4674981
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471124