Temperature dependent model of carbon supported platinum fuel cell catalyst degradation

铂金 溶解 集聚经济 催化作用 电化学 材料科学 碳纤维 降级(电信) 化学工程 粒子(生态学) 粒径 质子交换膜燃料电池 化学 复合材料 电极 物理化学 计算机科学 工程类 复合数 电信 生物化学 海洋学 地质学
作者
Ambrož Kregar,Matija Gatalo,Nik Maselj,Nejc Hodnik,Tomaž Katrašnik
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:514: 230542-230542 被引量:31
标识
DOI:10.1016/j.jpowsour.2021.230542
摘要

The use of mathematical modelling for describing the degradation of platinum-based carbon-supported catalysts (Pt/C) in PEMFC plays a crucial role in the development of new materials and mitigation strategies as well as in the improved understanding of individual degradation mechanisms and their relation to the operational conditions. In this work we present the first physically based model of Pt/C catalyst degradation that fully covers the effects of temperature on detrimental electrochemical reactions, consequent platinum particles dissolution, detachment and agglomeration, and the resulting loss of electrochemical surface area. The model is verified on the results of six accelerated stress tests performed on an industrial benchmark catalyst at various temperatures and potential cycling windows. The model is capable of reproducing the results of all experiments using the same set of model parameters, compatible with DFT calculations for energy barriers of similar electrochemical reactions as well as with the parameters of existing degradation models, which confirms its plausibility. According to the model results, the dissolution and subsequent redeposition of platinum is strongly affected by the temperature and represents the main mechanism of particle growth at temperatures below 60 °C, with carbon corrosion induced detachment and agglomeration playing only a minor role in particle growth. • Temperature-dependent electrochemical model of Pt fuel cell catalyst is developed. • Catalyst electrochemical surface loss due to dissolution and agglomeration is modelled. • The model is tested on degradation experiments at various potentials and temperatures. • The credibility of the model is confirmed by good agreement with the experimental data. • Platinum dissolution and redeposition is recognised as the main degradation mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BatFaith完成签到,获得积分10
1秒前
STARLIT完成签到,获得积分10
1秒前
orixero应助debbyduke采纳,获得10
2秒前
木棉哆哆完成签到 ,获得积分10
2秒前
胖墩儿驾到完成签到,获得积分10
2秒前
LY_Qin完成签到,获得积分10
2秒前
Liuxiaoliu完成签到 ,获得积分10
3秒前
洁净雨发布了新的文献求助10
3秒前
呆萌语梦应助张才豪采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5433发布了新的文献求助10
4秒前
波波波波波6764完成签到 ,获得积分10
5秒前
Steve发布了新的文献求助10
5秒前
幸运星完成签到,获得积分10
5秒前
共享精神应助WWW采纳,获得10
5秒前
希希完成签到 ,获得积分10
6秒前
爱吃橙子完成签到 ,获得积分10
6秒前
独孤刘完成签到,获得积分10
6秒前
HR112发布了新的文献求助10
6秒前
hulin_zjxu完成签到,获得积分10
7秒前
7秒前
8秒前
薄荷完成签到,获得积分10
8秒前
9秒前
qqq完成签到 ,获得积分10
9秒前
Whim完成签到,获得积分0
9秒前
鱼饼完成签到 ,获得积分10
9秒前
传奇3应助IIIIIIIIIIIIII采纳,获得30
9秒前
star完成签到,获得积分10
10秒前
海贼王的男人完成签到 ,获得积分10
10秒前
香蕉觅云应助ExtroGod采纳,获得10
11秒前
Mister.WangK完成签到,获得积分10
11秒前
忐忑的远山完成签到,获得积分10
11秒前
11秒前
坚定的又莲完成签到 ,获得积分10
12秒前
潇洒的白昼完成签到,获得积分10
12秒前
天地一沙鸥完成签到 ,获得积分10
12秒前
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197