Stereo Video Reconstruction Without Explicit Depth Maps for Endoscopic Surgery

计算机科学 人工智能 任务(项目管理) 计算机视觉 头戴式耳机 帧(网络) 管理 电信 经济
作者
Annika Brundyn,Jesse Swanson,Kyunghyun Cho,Doug Kondziolka,Eric K. Oermann
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2109.08227
摘要

We introduce the task of stereo video reconstruction or, equivalently, 2D-to-3D video conversion for minimally invasive surgical video. We design and implement a series of end-to-end U-Net-based solutions for this task by varying the input (single frame vs. multiple consecutive frames), loss function (MSE, MAE, or perceptual losses), and network architecture. We evaluate these solutions by surveying ten experts - surgeons who routinely perform endoscopic surgery. We run two separate reader studies: one evaluating individual frames and the other evaluating fully reconstructed 3D video played on a VR headset. In the first reader study, a variant of the U-Net that takes as input multiple consecutive video frames and outputs the missing view performs best. We draw two conclusions from this outcome. First, motion information coming from multiple past frames is crucial in recreating stereo vision. Second, the proposed U-Net variant can indeed exploit such motion information for solving this task. The result from the second study further confirms the effectiveness of the proposed U-Net variant. The surgeons reported that they could successfully perceive depth from the reconstructed 3D video clips. They also expressed a clear preference for the reconstructed 3D video over the original 2D video. These two reader studies strongly support the usefulness of the proposed task of stereo reconstruction for minimally invasive surgical video and indicate that deep learning is a promising approach to this task. Finally, we identify two automatic metrics, LPIPS and DISTS, that are strongly correlated with expert judgement and that could serve as proxies for the latter in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助sommer12345采纳,获得10
刚刚
1秒前
2秒前
2秒前
3秒前
yls123发布了新的文献求助10
3秒前
3秒前
疯狂的冬瓜完成签到,获得积分10
4秒前
UP完成签到,获得积分10
4秒前
明理的沛柔关注了科研通微信公众号
4秒前
asdadad完成签到,获得积分10
4秒前
tt825完成签到,获得积分10
4秒前
fff完成签到,获得积分10
5秒前
派大星完成签到,获得积分10
5秒前
KKKKKKK完成签到 ,获得积分10
7秒前
7秒前
雪白的南晴完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
8秒前
bc应助loveyourself采纳,获得30
8秒前
烟花应助nav采纳,获得10
8秒前
犹豫语琴发布了新的文献求助10
8秒前
天天发布了新的文献求助10
9秒前
NexusExplorer应助SASA采纳,获得30
9秒前
真洋子哈完成签到,获得积分10
9秒前
流砂完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
丫丫完成签到,获得积分10
12秒前
12秒前
wahaha完成签到,获得积分10
12秒前
Orange应助于彤采纳,获得10
12秒前
13秒前
我爱科研完成签到,获得积分10
13秒前
kiki完成签到,获得积分10
13秒前
852应助BorisY采纳,获得10
14秒前
天真依玉完成签到,获得积分10
14秒前
所所应助饱饱采纳,获得10
14秒前
ymx703114完成签到,获得积分10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002