Deep autoencoder architecture for bridge damage assessment using responses from several vehicles

桥(图论) 自编码 结构健康监测 计算机科学 噪音(视频) 分歧(语言学) 仪表(计算机编程) 人工神经网络 可靠性工程 工程类 结构工程 人工智能 图像(数学) 哲学 内科学 操作系统 医学 语言学
作者
Muhammad Zohaib Sarwar,Daniel Cantero
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:246: 113064-113064 被引量:63
标识
DOI:10.1016/j.engstruct.2021.113064
摘要

Vehicle-assisted monitoring is a promising alternative for rapid and low-cost bridge health monitoring compared to direct instrumentation of bridges. In recent years, centralized management systems for fleets of heavy vehicles have been adopted in transportation networks for logistics and other applications. These vehicles can be instrumented and easily integrated with the existing fleet management systems to provide information that can be used for bridge health monitoring. In this study, a numerical investigation is carried out to evaluate the feasibility of an indirect bridge monitoring system considering responses from several vehicles under operational conditions. The proposed method uses the vertical acceleration responses from a fleet of vehicles passing over a healthy bridge to train a deep autoencoder model (DAE) for bridge damage sensitive features. It is shown that the error in signal reconstruction from the trained DAE is sensitive to damage, when considering the distribution or results from several separate vehicle-crossing events. The bridge damage is quantified with a damage index based on the Kullback-Leibler divergence that evaluates the change in the distributions of the reconstruction errors. The performance of the proposed method is evaluated for two numerical scenarios of vehicle populations, for different damage cases including the effect of operational uncertainties (road profile, measurement noise, and variability in vehicle properties). The proposed method is also evaluated for more realistic multi-span continuous bridge for different damage cases in the presence of random traffic. The result show that the proposed method can detect damage under operational conditions and that it has the potential to become a new tool for cost-effective bridge health monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的方盒完成签到 ,获得积分10
刚刚
小垃圾10号完成签到,获得积分10
3秒前
义气笑容完成签到,获得积分10
4秒前
5秒前
cdercder应助tkx是流氓兔采纳,获得10
6秒前
dh发布了新的文献求助30
9秒前
9秒前
ste56完成签到,获得积分10
11秒前
joker_k应助负责的方盒采纳,获得10
23秒前
潮汐发布了新的文献求助10
24秒前
falcon完成签到,获得积分10
24秒前
乐观的星月完成签到 ,获得积分10
24秒前
25秒前
stop here完成签到,获得积分10
27秒前
28秒前
不如看海完成签到 ,获得积分10
28秒前
29秒前
WLY完成签到 ,获得积分10
30秒前
Barton完成签到,获得积分10
30秒前
Lin发布了新的文献求助10
32秒前
34秒前
淡定的安白完成签到,获得积分10
36秒前
失眠的凡白关注了科研通微信公众号
36秒前
sjw525完成签到,获得积分10
38秒前
快乐的完成签到 ,获得积分10
38秒前
奔跑西木完成签到 ,获得积分10
38秒前
XIAOJU_U完成签到 ,获得积分10
40秒前
现代的bb完成签到,获得积分10
42秒前
负责的方盒完成签到,获得积分10
42秒前
lsy完成签到,获得积分10
45秒前
今天只做一件事完成签到,获得积分0
45秒前
猫咪也疯狂完成签到,获得积分10
46秒前
今后应助潮汐采纳,获得10
46秒前
小凡凡完成签到,获得积分10
46秒前
tkx是流氓兔完成签到,获得积分10
46秒前
星希完成签到 ,获得积分10
47秒前
Juid应助Lin采纳,获得20
49秒前
勤劳桐完成签到 ,获得积分10
50秒前
心心完成签到 ,获得积分10
51秒前
dh完成签到,获得积分10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674629
求助须知:如何正确求助?哪些是违规求助? 3229838
关于积分的说明 9787196
捐赠科研通 2940440
什么是DOI,文献DOI怎么找? 1611972
邀请新用户注册赠送积分活动 761063
科研通“疑难数据库(出版商)”最低求助积分说明 736488