水准点(测量)
计算机科学
人工智能
回归
深信不疑网络
支持向量机
时间序列
机器学习
集成学习
系列(地层学)
深度学习
集合预报
回归分析
数据挖掘
统计
数学
地理
古生物学
生物
大地测量学
作者
Xueheng Qiu,Le Zhang,Ye Ren,Ponnuthurai Nagaratnam Suganthan,G.A.J. Amaratunga
标识
DOI:10.1109/ciel.2014.7015739
摘要
In this paper, for the first time, an ensemble of deep learning belief networks (DBN) is proposed for regression and time series forecasting. Another novel contribution is to aggregate the outputs from various DBNs by a support vector regression (SVR) model. We show the advantage of the proposed method on three electricity load demand datasets, one artificial time series dataset and three regression datasets over other benchmark methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI