Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 过程(计算) 决策树 人工智能 变量(数学) 数据科学 订单(交换) 数据挖掘 数学 经济 数学分析 财务 操作系统 数据库
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:593
标识
DOI:10.48550/arxiv.1407.7502
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ira发布了新的文献求助10
刚刚
刚刚
执着的冬瓜完成签到 ,获得积分10
刚刚
彩色发布了新的文献求助10
1秒前
1秒前
dimension完成签到,获得积分10
1秒前
今后应助张张采纳,获得10
1秒前
谦让的博发布了新的文献求助10
1秒前
迷路幼枫完成签到 ,获得积分10
2秒前
nzlatto完成签到 ,获得积分10
2秒前
bbbbhr发布了新的文献求助10
2秒前
2秒前
OriC发布了新的文献求助10
2秒前
重要的大有完成签到,获得积分10
2秒前
言屿完成签到,获得积分10
2秒前
苗浩阳发布了新的文献求助10
3秒前
www发布了新的文献求助10
3秒前
科研通AI6应助MA采纳,获得10
4秒前
01发布了新的文献求助10
4秒前
英姑应助k_1采纳,获得10
4秒前
深情安青应助努力的学采纳,获得10
4秒前
4秒前
monned发布了新的文献求助10
5秒前
上官老黑发布了新的文献求助10
5秒前
5秒前
滴滴答答发布了新的文献求助20
5秒前
white发布了新的文献求助10
6秒前
6秒前
英俊的铭应助《子非鱼》采纳,获得10
7秒前
OriC完成签到,获得积分10
7秒前
7秒前
7秒前
传奇3应助段新杰采纳,获得10
8秒前
Caroline发布了新的文献求助10
8秒前
9秒前
就是我完成签到,获得积分10
9秒前
9秒前
10秒前
111关闭了111文献求助
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712