Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 过程(计算) 决策树 人工智能 变量(数学) 数据科学 订单(交换) 数据挖掘 数学 财务 数据库 操作系统 数学分析 经济
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:557
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助智慧女孩采纳,获得10
1秒前
桥桥发布了新的文献求助10
1秒前
Hello应助吃吃采纳,获得10
2秒前
归尘应助1区top采纳,获得10
3秒前
3秒前
柏林寒冬应助沉默的宛筠采纳,获得10
3秒前
煜钧发布了新的文献求助30
4秒前
4秒前
4秒前
Leewener发布了新的文献求助20
4秒前
DLY677完成签到,获得积分10
5秒前
陈思思发布了新的文献求助10
6秒前
JamesPei应助跑在颖采纳,获得10
7秒前
NexusExplorer应助zhou采纳,获得10
7秒前
8秒前
9秒前
11秒前
11秒前
11秒前
11秒前
蛋宝完成签到,获得积分10
12秒前
星辰大海应助郑凯歌采纳,获得10
12秒前
SUnnnnn发布了新的文献求助10
13秒前
哈h发布了新的文献求助10
13秒前
七七完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
三斤发布了新的文献求助10
15秒前
七七发布了新的文献求助10
16秒前
16秒前
陈思思完成签到,获得积分10
18秒前
19秒前
SciGPT应助nannan采纳,获得10
20秒前
balabala发布了新的文献求助10
20秒前
20秒前
脑洞疼应助临江仙采纳,获得10
21秒前
22秒前
Hailey完成签到,获得积分10
23秒前
微笑的冥幽完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891