亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 过程(计算) 决策树 人工智能 变量(数学) 数据科学 订单(交换) 数据挖掘 数学 财务 数据库 操作系统 数学分析 经济
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:593
标识
DOI:10.48550/arxiv.1407.7502
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中華人民共和完成签到,获得积分10
2秒前
传奇3应助zzzz采纳,获得10
3秒前
8秒前
gravity完成签到,获得积分10
9秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
gravity发布了新的文献求助30
13秒前
zzzz发布了新的文献求助10
16秒前
李健的粉丝团团长应助lg采纳,获得10
31秒前
Orange应助昏睡的梦安采纳,获得10
42秒前
44秒前
MchemG应助科研通管家采纳,获得30
44秒前
lsl应助科研通管家采纳,获得10
44秒前
MchemG应助科研通管家采纳,获得30
45秒前
lsl应助科研通管家采纳,获得10
45秒前
C_完成签到,获得积分10
46秒前
shen完成签到 ,获得积分10
48秒前
48秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
StH完成签到,获得积分10
1分钟前
Ares完成签到,获得积分10
1分钟前
1分钟前
lg发布了新的文献求助10
2分钟前
情怀应助lu采纳,获得10
2分钟前
shier完成签到,获得积分20
2分钟前
shier发布了新的文献求助10
2分钟前
lg完成签到,获得积分10
2分钟前
Jasper应助shier采纳,获得10
2分钟前
科研通AI6应助Ahan采纳,获得10
2分钟前
大园完成签到 ,获得积分10
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
oshunne完成签到,获得积分10
2分钟前
tttttttt发布了新的文献求助10
2分钟前
CipherSage应助FAYE采纳,获得10
3分钟前
赘婿应助tttttttt采纳,获得20
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644707
求助须知:如何正确求助?哪些是违规求助? 4765184
关于积分的说明 15025524
捐赠科研通 4803066
什么是DOI,文献DOI怎么找? 2567894
邀请新用户注册赠送积分活动 1525458
关于科研通互助平台的介绍 1484992