Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 过程(计算) 决策树 人工智能 变量(数学) 数据科学 订单(交换) 数据挖掘 数学 经济 数学分析 财务 操作系统 数据库
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:557
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Satan完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
香蕉觅云应助南枝采纳,获得10
4秒前
4秒前
陈末应助梦霖采纳,获得10
5秒前
俊杰发布了新的文献求助10
5秒前
逍遥游发布了新的文献求助10
7秒前
7秒前
小火车EL完成签到,获得积分10
8秒前
JIASHOUSHOU完成签到,获得积分10
9秒前
9秒前
我是老大应助干净冰露采纳,获得10
9秒前
北地风情应助皮卡丘采纳,获得20
9秒前
Haoziyu发布了新的文献求助30
10秒前
FG关闭了FG文献求助
11秒前
孙伟健发布了新的文献求助10
11秒前
刘富宇完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
单身的青柏完成签到 ,获得积分10
13秒前
annathd发布了新的文献求助10
13秒前
平常心发布了新的文献求助10
13秒前
14秒前
Wind发布了新的文献求助10
14秒前
端庄梦桃完成签到,获得积分10
15秒前
NexusExplorer应助Clover04采纳,获得10
15秒前
16秒前
nc发布了新的文献求助10
16秒前
所所应助111111采纳,获得10
16秒前
华仔应助ruirui采纳,获得30
16秒前
Haoziyu完成签到,获得积分20
17秒前
难过若枫完成签到,获得积分10
17秒前
南枝发布了新的文献求助10
17秒前
悦耳寒云完成签到,获得积分10
18秒前
19秒前
专注月亮发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568