Understanding Random Forests: From Theory to Practice

可解释性 随机森林 计算机科学 机器学习 可扩展性 过程(计算) 决策树 人工智能 变量(数学) 数据科学 订单(交换) 数据挖掘 数学 财务 数据库 操作系统 数学分析 经济
作者
Gilles Louppe
出处
期刊:Cornell University - arXiv 被引量:350
摘要

Data analysis and machine learning have become an integrative part of the modern scientific methodology, offering automated procedures for the prediction of a phenomenon based on past observations, unraveling underlying patterns in data and providing insights about the problem. Yet, caution should avoid using machine learning as a black-box tool, but rather consider it as a methodology, with a rational thought process that is entirely dependent on the problem under study. In particular, the use of algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. Accordingly, the goal of this thesis is to provide an in-depth analysis of random forests, consistently calling into question each and every part of the algorithm, in order to shed new light on its learning capabilities, inner workings and interpretability. The first part of this work studies the induction of decision trees and the construction of ensembles of randomized trees, motivating their design and purpose whenever possible. Our contributions follow with an original complexity analysis of random forests, showing their good computational performance and scalability, along with an in-depth discussion of their implementation details, as contributed within Scikit-Learn. In the second part of this work, we analyse and discuss the interpretability of random forests in the eyes of variable importance measures. The core of our contributions rests in the theoretical characterization of the Mean Decrease of Impurity variable importance measure, from which we prove and derive some of its properties in the case of multiway totally randomized trees and in asymptotic conditions. In consequence of this work, our analysis demonstrates that variable importances [...].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
marshyyy应助mxq采纳,获得10
刚刚
2秒前
3秒前
于浩完成签到,获得积分10
5秒前
ganzhongxin发布了新的文献求助10
6秒前
Neon0524完成签到 ,获得积分10
6秒前
7秒前
爱撒娇的曼凝完成签到,获得积分10
7秒前
丘比特应助谦让平安采纳,获得10
9秒前
9秒前
10秒前
Specification应助Lang777采纳,获得10
11秒前
11秒前
12秒前
12秒前
zhou完成签到,获得积分10
12秒前
尛瞐慶成发布了新的文献求助10
13秒前
13秒前
学不会完成签到,获得积分20
14秒前
15秒前
Yu发布了新的文献求助10
15秒前
shan发布了新的文献求助10
16秒前
姜姜发布了新的文献求助10
16秒前
17秒前
学不会发布了新的文献求助10
17秒前
纯氧发布了新的文献求助10
19秒前
20秒前
20秒前
jianning完成签到,获得积分10
20秒前
大个应助橘子采纳,获得10
21秒前
21秒前
21秒前
lanxinyue完成签到,获得积分10
21秒前
Felixsun发布了新的文献求助10
21秒前
zzz发布了新的文献求助10
22秒前
李爱国应助奔奔采纳,获得10
23秒前
黄沙漠发布了新的文献求助10
23秒前
阿白发布了新的文献求助10
23秒前
24秒前
asuit发布了新的文献求助30
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596