Laboratory biomarkers for lung disease severity and progression in cystic fibrosis

囊性纤维化 医学 支气管肺泡灌洗 囊性纤维化跨膜传导调节器 疾病 生物标志物 内科学 免疫学 病理 肺结核 生物 生物化学
作者
Zsolt Bene,Zsolt Fejes,Milan Maçek,Margarida D. Amaral,I Balogh,Béla Nagy
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:508: 277-286 被引量:14
标识
DOI:10.1016/j.cca.2020.05.015
摘要

Although the clinical outcomes of cystic fibrosis (CF) have been markedly improved through the recent implementation of novel CF transmembrane conductance regulator (CFTR) modulator drugs, robust and reliable biomarkers are still demanded for the early detection of CF lung disease progression, monitoring treatment efficacy and predicting life-threatening clinical complications. Thus, there is an unmet need to identify and validate novel, ideally blood based biomarkers with strong correlations to the severity of CF lung disease, which represents a major contribution to overall CF morbidity and mortality. In this review, we aim to summarize the utility of thus far studied blood-, sputum- and bronchoalveolar lavage (BAL)-based biomarkers to evaluate inflammatory conditions in the lung and to follow treatment efficacy in CF. Measurements of sweat chloride concentrations and the spirometric parameter FEV1 are currently utilized to monitor CFTR function and the effect of various CF therapies. Nonetheless, both have inherent pitfalls and limitations, thus routinely analyzed biomarkers in blood, sputum or BAL samples are required as surrogates for lung disorders. Recent discovery of new protein (e.g. HE4) and RNA-based biomarkers, such as microRNAs may offer a higher efficacy, which in aggregate may be valuable to evaluate disease prognosis and to substantiate CF drug efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
maox1aoxin应助ramsey33采纳,获得30
1秒前
布鲁鲁完成签到,获得积分10
2秒前
fangzhang发布了新的文献求助10
4秒前
haLfmoon完成签到,获得积分10
5秒前
左一酱完成签到 ,获得积分10
6秒前
7秒前
小飞发布了新的文献求助10
8秒前
9秒前
shun发布了新的文献求助10
11秒前
ZYH发布了新的文献求助10
11秒前
脑洞疼应助马上毕业采纳,获得10
12秒前
13秒前
17秒前
GGBOND完成签到 ,获得积分10
19秒前
李健的小迷弟应助安an采纳,获得10
19秒前
19秒前
xutong de完成签到,获得积分10
21秒前
ramsey33完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
nolan完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
李健应助苏苏诺诺2023采纳,获得10
28秒前
一只熊发布了新的文献求助10
28秒前
28秒前
28秒前
CipherSage应助shun采纳,获得10
29秒前
29秒前
威武醉薇发布了新的文献求助10
29秒前
lhh0529yt完成签到,获得积分10
30秒前
Orange应助星威采纳,获得10
30秒前
寒冷丹翠发布了新的文献求助10
32秒前
双黄应助皮代谷采纳,获得10
33秒前
双黄应助皮代谷采纳,获得10
33秒前
yizhimcfu发布了新的文献求助10
34秒前
八十六完成签到,获得积分10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268226
求助须知:如何正确求助?哪些是违规求助? 2907728
关于积分的说明 8343229
捐赠科研通 2578130
什么是DOI,文献DOI怎么找? 1401698
科研通“疑难数据库(出版商)”最低求助积分说明 655151
邀请新用户注册赠送积分活动 634229