Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers

卷积神经网络 学习迁移 深度学习 人工智能 乳腺癌 人工神经网络 计算机科学 机器学习 模式识别(心理学) 癌症 医学 内科学
作者
Yang Zhang,Jeon‐Hor Chen,Yezhi Lin,Si‐Wa Chan,Jiejie Zhou,Daniel S. Chow,Peter D. Chang,Tiffany C. Kwong,Dah‐Cherng Yeh,Xinxin Wang,Ritesh Parajuli,Rita S. Mehta,Meihao Wang,Min‐Ying Su
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (4): 2559-2567 被引量:92
标识
DOI:10.1007/s00330-020-07274-x
摘要

To apply deep learning algorithms using a conventional convolutional neural network (CNN) and a recurrent CNN to differentiate three breast cancer molecular subtypes on MRI.A total of 244 patients were analyzed, 99 in training dataset scanned at 1.5 T and 83 in testing-1 and 62 in testing-2 scanned at 3 T. Patients were classified into 3 subtypes based on hormonal receptor (HR) and HER2 receptor: (HR+/HER2-), HER2+, and triple negative (TN). Only images acquired in the DCE sequence were used in the analysis. The smallest bounding box covering tumor ROI was used as the input for deep learning to develop the model in the training dataset, by using a conventional CNN and the convolutional long short-term memory (CLSTM). Then, transfer learning was applied to re-tune the model using testing-1(2) and evaluated in testing-2(1).In the training dataset, the mean accuracy evaluated using tenfold cross-validation was higher by using CLSTM (0.91) than by using CNN (0.79). When the developed model was applied to the independent testing datasets, the accuracy was 0.4-0.5. With transfer learning by re-tuning parameters in testing-1, the mean accuracy reached 0.91 by CNN and 0.83 by CLSTM, and improved accuracy in testing-2 from 0.47 to 0.78 by CNN and from 0.39 to 0.74 by CLSTM. Overall, transfer learning could improve the classification accuracy by greater than 30%.The recurrent network using CLSTM could track changes in signal intensity during DCE acquisition, and achieved a higher accuracy compared with conventional CNN during training. For datasets acquired using different settings, transfer learning can be applied to re-tune the model and improve accuracy.• Deep learning can be applied to differentiate breast cancer molecular subtypes. • The recurrent neural network using CLSTM could track the change of signal intensity in DCE images, and achieved a higher accuracy compared with conventional CNN during training. • For datasets acquired using different scanners with different imaging protocols, transfer learning provided an efficient method to re-tune the classification model and improve accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡仔发布了新的文献求助10
刚刚
Cindy165完成签到 ,获得积分10
1秒前
田様应助cslghe采纳,获得10
1秒前
牛牛发布了新的文献求助10
2秒前
xtx发布了新的文献求助10
2秒前
2秒前
3秒前
曾经山灵发布了新的文献求助10
3秒前
ding应助lxr采纳,获得10
4秒前
4秒前
5秒前
lrsabrina发布了新的文献求助10
6秒前
charllie完成签到 ,获得积分10
7秒前
隐形曼青应助牛牛采纳,获得10
7秒前
lsong完成签到,获得积分10
8秒前
ziyue发布了新的文献求助10
9秒前
9秒前
梦见鲸鱼岛完成签到,获得积分10
9秒前
王凯发布了新的文献求助10
9秒前
lucky发布了新的文献求助10
10秒前
Boston完成签到,获得积分10
11秒前
12秒前
ayaka发布了新的文献求助10
12秒前
星期天不上发条完成签到 ,获得积分10
13秒前
WuCola完成签到 ,获得积分10
13秒前
wangzx完成签到,获得积分10
14秒前
14秒前
AishuangQi完成签到,获得积分10
14秒前
14秒前
雨田完成签到,获得积分10
14秒前
茉莉完成签到 ,获得积分10
16秒前
AAAA发布了新的文献求助10
18秒前
18秒前
19秒前
yueyeu567发布了新的文献求助10
20秒前
WangQ完成签到,获得积分10
20秒前
充电宝应助雨田采纳,获得10
20秒前
Eva完成签到,获得积分10
21秒前
22秒前
lxr发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604240
求助须知:如何正确求助?哪些是违规求助? 4689005
关于积分的说明 14857491
捐赠科研通 4697182
什么是DOI,文献DOI怎么找? 2541216
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471867