清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers

卷积神经网络 学习迁移 深度学习 人工智能 乳腺癌 人工神经网络 计算机科学 机器学习 模式识别(心理学) 癌症 医学 内科学
作者
Yang Zhang,Jeon‐Hor Chen,Yezhi Lin,Si‐Wa Chan,Jiejie Zhou,Daniel S. Chow,Peter D. Chang,Tiffany C. Kwong,Dah‐Cherng Yeh,Xinxin Wang,Ritesh Parajuli,Rita S. Mehta,Meihao Wang,Min‐Ying Su
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (4): 2559-2567 被引量:92
标识
DOI:10.1007/s00330-020-07274-x
摘要

To apply deep learning algorithms using a conventional convolutional neural network (CNN) and a recurrent CNN to differentiate three breast cancer molecular subtypes on MRI.A total of 244 patients were analyzed, 99 in training dataset scanned at 1.5 T and 83 in testing-1 and 62 in testing-2 scanned at 3 T. Patients were classified into 3 subtypes based on hormonal receptor (HR) and HER2 receptor: (HR+/HER2-), HER2+, and triple negative (TN). Only images acquired in the DCE sequence were used in the analysis. The smallest bounding box covering tumor ROI was used as the input for deep learning to develop the model in the training dataset, by using a conventional CNN and the convolutional long short-term memory (CLSTM). Then, transfer learning was applied to re-tune the model using testing-1(2) and evaluated in testing-2(1).In the training dataset, the mean accuracy evaluated using tenfold cross-validation was higher by using CLSTM (0.91) than by using CNN (0.79). When the developed model was applied to the independent testing datasets, the accuracy was 0.4-0.5. With transfer learning by re-tuning parameters in testing-1, the mean accuracy reached 0.91 by CNN and 0.83 by CLSTM, and improved accuracy in testing-2 from 0.47 to 0.78 by CNN and from 0.39 to 0.74 by CLSTM. Overall, transfer learning could improve the classification accuracy by greater than 30%.The recurrent network using CLSTM could track changes in signal intensity during DCE acquisition, and achieved a higher accuracy compared with conventional CNN during training. For datasets acquired using different settings, transfer learning can be applied to re-tune the model and improve accuracy.• Deep learning can be applied to differentiate breast cancer molecular subtypes. • The recurrent neural network using CLSTM could track the change of signal intensity in DCE images, and achieved a higher accuracy compared with conventional CNN during training. • For datasets acquired using different scanners with different imaging protocols, transfer learning provided an efficient method to re-tune the classification model and improve accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
digger2023完成签到 ,获得积分10
19秒前
史琛完成签到,获得积分20
39秒前
55秒前
59秒前
WenJun完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
史琛发布了新的文献求助10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
2分钟前
Dr.Tang完成签到 ,获得积分10
2分钟前
2分钟前
Siren发布了新的文献求助30
2分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
3分钟前
sci完成签到 ,获得积分10
3分钟前
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI5应助Siren采纳,获得10
3分钟前
3分钟前
Siren发布了新的文献求助10
4分钟前
ding应助瑁柏采纳,获得10
4分钟前
瑁柏完成签到,获得积分10
4分钟前
4分钟前
4分钟前
瑁柏发布了新的文献求助10
4分钟前
Siren发布了新的文献求助10
4分钟前
5分钟前
Ggap1发布了新的文献求助10
5分钟前
Ggap1完成签到,获得积分10
5分钟前
思源应助Siren采纳,获得10
5分钟前
Raul完成签到 ,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
Hello应助科研通管家采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513331
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794417
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664