亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers

卷积神经网络 学习迁移 深度学习 人工智能 乳腺癌 人工神经网络 计算机科学 机器学习 模式识别(心理学) 癌症 医学 内科学
作者
Yang Zhang,Jeon‐Hor Chen,Yezhi Lin,Si‐Wa Chan,Jiejie Zhou,Daniel S. Chow,Peter D. Chang,Tiffany C. Kwong,Dah‐Cherng Yeh,Xinxin Wang,Ritesh Parajuli,Rita S. Mehta,Meihao Wang,Min‐Ying Su
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (4): 2559-2567 被引量:92
标识
DOI:10.1007/s00330-020-07274-x
摘要

To apply deep learning algorithms using a conventional convolutional neural network (CNN) and a recurrent CNN to differentiate three breast cancer molecular subtypes on MRI.A total of 244 patients were analyzed, 99 in training dataset scanned at 1.5 T and 83 in testing-1 and 62 in testing-2 scanned at 3 T. Patients were classified into 3 subtypes based on hormonal receptor (HR) and HER2 receptor: (HR+/HER2-), HER2+, and triple negative (TN). Only images acquired in the DCE sequence were used in the analysis. The smallest bounding box covering tumor ROI was used as the input for deep learning to develop the model in the training dataset, by using a conventional CNN and the convolutional long short-term memory (CLSTM). Then, transfer learning was applied to re-tune the model using testing-1(2) and evaluated in testing-2(1).In the training dataset, the mean accuracy evaluated using tenfold cross-validation was higher by using CLSTM (0.91) than by using CNN (0.79). When the developed model was applied to the independent testing datasets, the accuracy was 0.4-0.5. With transfer learning by re-tuning parameters in testing-1, the mean accuracy reached 0.91 by CNN and 0.83 by CLSTM, and improved accuracy in testing-2 from 0.47 to 0.78 by CNN and from 0.39 to 0.74 by CLSTM. Overall, transfer learning could improve the classification accuracy by greater than 30%.The recurrent network using CLSTM could track changes in signal intensity during DCE acquisition, and achieved a higher accuracy compared with conventional CNN during training. For datasets acquired using different settings, transfer learning can be applied to re-tune the model and improve accuracy.• Deep learning can be applied to differentiate breast cancer molecular subtypes. • The recurrent neural network using CLSTM could track the change of signal intensity in DCE images, and achieved a higher accuracy compared with conventional CNN during training. • For datasets acquired using different scanners with different imaging protocols, transfer learning provided an efficient method to re-tune the classification model and improve accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ccc完成签到 ,获得积分10
19秒前
英姑应助Zidawhy采纳,获得10
20秒前
24秒前
科研通AI2S应助敏er好学采纳,获得10
28秒前
29秒前
Percy完成签到 ,获得积分10
32秒前
34秒前
luster发布了新的文献求助10
34秒前
Zidawhy发布了新的文献求助10
38秒前
一休完成签到,获得积分10
49秒前
1分钟前
科目三应助叶逐风采纳,获得10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
敏er好学发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
LPPQBB应助科研通管家采纳,获得30
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
叶逐风发布了新的文献求助10
1分钟前
1分钟前
wyx发布了新的文献求助10
1分钟前
超级的路人完成签到,获得积分20
2分钟前
cassie发布了新的文献求助10
2分钟前
Marciu33发布了新的文献求助10
2分钟前
嘻嘻完成签到 ,获得积分10
2分钟前
Hello应助叶逐风采纳,获得10
2分钟前
小蘑菇应助cassie采纳,获得10
2分钟前
2分钟前
施芳铭发布了新的文献求助10
2分钟前
大个应助Zidawhy采纳,获得10
2分钟前
Zidawhy完成签到,获得积分10
2分钟前
施芳铭完成签到,获得积分10
2分钟前
wanci应助JoeyJin采纳,获得10
2分钟前
2分钟前
Zidawhy发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356840
求助须知:如何正确求助?哪些是违规求助? 4488537
关于积分的说明 13972306
捐赠科研通 4389526
什么是DOI,文献DOI怎么找? 2411633
邀请新用户注册赠送积分活动 1404132
关于科研通互助平台的介绍 1378213