Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers

卷积神经网络 学习迁移 深度学习 人工智能 乳腺癌 人工神经网络 计算机科学 机器学习 模式识别(心理学) 癌症 医学 内科学
作者
Yang Zhang,Jeon‐Hor Chen,Yezhi Lin,Si‐Wa Chan,Jiejie Zhou,Daniel Chow,Peter D. Chang,Tiffany C. Kwong,Dah‐Cherng Yeh,Xinxin Wang,Ritesh Parajuli,Rita S. Mehta,Meihao Wang,Min‐Ying Su
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (4): 2559-2567 被引量:86
标识
DOI:10.1007/s00330-020-07274-x
摘要

To apply deep learning algorithms using a conventional convolutional neural network (CNN) and a recurrent CNN to differentiate three breast cancer molecular subtypes on MRI.A total of 244 patients were analyzed, 99 in training dataset scanned at 1.5 T and 83 in testing-1 and 62 in testing-2 scanned at 3 T. Patients were classified into 3 subtypes based on hormonal receptor (HR) and HER2 receptor: (HR+/HER2-), HER2+, and triple negative (TN). Only images acquired in the DCE sequence were used in the analysis. The smallest bounding box covering tumor ROI was used as the input for deep learning to develop the model in the training dataset, by using a conventional CNN and the convolutional long short-term memory (CLSTM). Then, transfer learning was applied to re-tune the model using testing-1(2) and evaluated in testing-2(1).In the training dataset, the mean accuracy evaluated using tenfold cross-validation was higher by using CLSTM (0.91) than by using CNN (0.79). When the developed model was applied to the independent testing datasets, the accuracy was 0.4-0.5. With transfer learning by re-tuning parameters in testing-1, the mean accuracy reached 0.91 by CNN and 0.83 by CLSTM, and improved accuracy in testing-2 from 0.47 to 0.78 by CNN and from 0.39 to 0.74 by CLSTM. Overall, transfer learning could improve the classification accuracy by greater than 30%.The recurrent network using CLSTM could track changes in signal intensity during DCE acquisition, and achieved a higher accuracy compared with conventional CNN during training. For datasets acquired using different settings, transfer learning can be applied to re-tune the model and improve accuracy.• Deep learning can be applied to differentiate breast cancer molecular subtypes. • The recurrent neural network using CLSTM could track the change of signal intensity in DCE images, and achieved a higher accuracy compared with conventional CNN during training. • For datasets acquired using different scanners with different imaging protocols, transfer learning provided an efficient method to re-tune the classification model and improve accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
踏实的智宸应助Ben采纳,获得10
刚刚
zhuzhu发布了新的文献求助10
刚刚
1秒前
wz发布了新的文献求助10
1秒前
2秒前
王玉琦发布了新的文献求助10
2秒前
2秒前
昵称什么的不重要啦完成签到 ,获得积分10
3秒前
威武的半芹完成签到,获得积分10
3秒前
娆疆第一深情完成签到,获得积分10
3秒前
WWXWWX应助笑点低天德采纳,获得10
4秒前
4秒前
iufan发布了新的文献求助10
4秒前
研友_nV2pkn发布了新的文献求助10
4秒前
陈chen发布了新的文献求助10
4秒前
大胆的弼发布了新的文献求助10
5秒前
繁荣的鲂完成签到,获得积分10
6秒前
震动的修洁完成签到 ,获得积分10
6秒前
6秒前
领导范儿应助苹果板栗采纳,获得10
6秒前
啦啦啦发布了新的文献求助10
7秒前
7秒前
7秒前
柳絮发布了新的文献求助10
8秒前
上官若男应助zxvcbnm采纳,获得10
8秒前
被门夹到鸟完成签到,获得积分10
9秒前
大白发布了新的文献求助10
9秒前
9秒前
9秒前
yolo完成签到,获得积分10
10秒前
10秒前
66647发布了新的文献求助10
10秒前
11秒前
Owen应助zhuzhu采纳,获得10
11秒前
12秒前
12秒前
gz000111完成签到,获得积分10
13秒前
香蕉觅云应助龙辉采纳,获得10
13秒前
clm发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134472
求助须知:如何正确求助?哪些是违规求助? 2785402
关于积分的说明 7772258
捐赠科研通 2441051
什么是DOI,文献DOI怎么找? 1297713
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813