A theory-guided deep-learning formulation and optimization of seismic waveform inversion

计算机科学 地震反演 反演(地质) Broyden–Fletcher–Goldfarb–Shanno算法 循环神经网络 反问题 算法 非线性系统 人工神经网络 波形 深度学习 数学优化 人工智能 地质学 数学 地震学 方位角 异步通信 雷达 数学分析 物理 构造学 电信 量子力学 计算机网络 几何学
作者
Jian Sun,Zhan Niu,K. A. Innanen,Junxiao Li,Daniel Trad
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:85 (2): R87-R99 被引量:151
标识
DOI:10.1190/geo2019-0138.1
摘要

Deep-learning techniques appear to be poised to play very important roles in our processing flows for inversion and interpretation of seismic data. The most successful seismic applications of these complex pattern-identifying networks will, presumably, be those that also leverage the deterministic physical models on which we normally base our seismic interpretations. If this is true, algorithms belonging to theory-guided data science, whose aim is roughly this, will have particular applicability in our field. We have developed a theory-designed recurrent neural network (RNN) that allows single- and multidimensional scalar acoustic seismic forward-modeling problems to be set up in terms of its forward propagation. We find that training such a network and updating its weights using measured seismic data then amounts to a solution of the seismic inverse problem and is equivalent to gradient-based seismic full-waveform inversion (FWI). By refining these RNNs in terms of optimization method and learning rate, comparisons are made between standard deep-learning optimization and nonlinear conjugate gradient and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimized algorithms. Our numerical analysis indicates that adaptive moment (or Adam) optimization with a learning rate set to match the magnitudes of standard FWI updates appears to produce the most stable and well-behaved waveform inversion results, which is reconfirmed by a multidimensional 2D Marmousi experiment. Future waveform RNNs, with additional degrees of freedom, may allow optimal wave propagation rules to be solved for at the same time as medium properties, reducing modeling errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得30
刚刚
刚刚
HYF完成签到,获得积分10
刚刚
刚刚
小兵应助科研通管家采纳,获得10
刚刚
晚来客应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
周涛发布了新的文献求助30
3秒前
柴桑青木完成签到,获得积分0
5秒前
小柠檬完成签到,获得积分10
6秒前
少盐完成签到,获得积分10
7秒前
刻苦牛马完成签到 ,获得积分10
8秒前
8秒前
Cold发布了新的文献求助10
9秒前
好奇小怪发布了新的文献求助10
10秒前
11秒前
12秒前
SciGPT应助四糸乃采纳,获得10
13秒前
愉快日记本完成签到,获得积分10
13秒前
执着绿草发布了新的文献求助10
13秒前
14秒前
16秒前
完美世界应助lianliyou采纳,获得10
16秒前
深情安青应助xieyuanxing采纳,获得10
16秒前
17秒前
17秒前
hhan完成签到,获得积分10
17秒前
NexusExplorer应助星河在眼里采纳,获得10
18秒前
李健的小迷弟应助xiaomi采纳,获得10
18秒前
18秒前
18秒前
木子完成签到,获得积分10
19秒前
邺yu完成签到,获得积分10
20秒前
li发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055