已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis

计算机科学 期限(时间) 萃取(化学) 人工智能 自然语言处理 化学 色谱法 量子力学 物理
作者
Manju Venugopalan,Deepa Gupta
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:246: 108668-108668 被引量:34
标识
DOI:10.1016/j.knosys.2022.108668
摘要

Aspect level sentiment analysis is a fine-grained task in sentiment analysis. It extracts aspects and their corresponding sentiment polarity from opinionated text. The first subtask of identifying the opinionated aspects is called aspect extraction, which is the focus of the work. Social media platforms are an enormous resource of unlabeled data. However, data annotation for fine-grained tasks is quite expensive and laborious. Hence unsupervised models would be highly appreciated. The proposed model is an unsupervised approach for aspect term extraction, a guided Latent Dirichlet Allocation (LDA) model that uses minimal aspect seed words from each aspect category to guide the model in identifying the hidden topics of interest to the user. The guided LDA model is enhanced by guiding inputs using regular expressions based on linguistic rules. The model is further enhanced by multiple pruning strategies, including a BERT based semantic filter, which incorporates semantics to strengthen situations where co-occurrence statistics might fail to serve as a differentiator. The thresholds for these semantic filters have been estimated using Particle Swarm Optimization strategy. The proposed model is expected to overcome the disadvantage of basic LDA models that fail to differentiate the overlapping topics that represent each aspect category. The work has been evaluated on the restaurant domain of SemEval 2014, 2015 and 2016 datasets and has reported an F-measure of 0.81, 0.74 and 0.75 respectively, which is competitive in comparison to the state of art unsupervised baselines and appreciable even with respect to the supervised baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文献无碍发布了新的文献求助30
刚刚
3秒前
搞怪人杰发布了新的文献求助10
4秒前
多情翠丝发布了新的文献求助10
5秒前
zxw完成签到,获得积分20
6秒前
7秒前
8秒前
11秒前
汉堡包应助勤奋的立果采纳,获得10
11秒前
Fanny发布了新的文献求助10
15秒前
17秒前
dylan发布了新的文献求助10
17秒前
wink发布了新的文献求助10
20秒前
21秒前
执着的海冬完成签到,获得积分10
22秒前
25秒前
29秒前
ll发布了新的文献求助10
31秒前
33秒前
故城发布了新的文献求助10
35秒前
wanci应助憨憨采纳,获得10
35秒前
36秒前
37秒前
40秒前
40秒前
41秒前
寻找发布了新的文献求助10
41秒前
铭铭铭完成签到,获得积分10
43秒前
壮观的黄豆完成签到 ,获得积分10
44秒前
44秒前
啦啦完成签到 ,获得积分10
44秒前
45秒前
憨憨发布了新的文献求助10
45秒前
Fanny完成签到,获得积分10
46秒前
无奈尔曼发布了新的文献求助30
47秒前
Jiayee发布了新的文献求助10
47秒前
Revovler完成签到,获得积分10
47秒前
嘎嘎发布了新的文献求助10
50秒前
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136861
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783453
捐赠科研通 2443938
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954