Impact of Personalized Recommendation on Today’s News Communication through Algorithmic Mechanism in the New Media Era

互联网 计算机科学 新闻媒体 大数据 出版 新闻聚合器 万维网 互联网隐私 广告 业务 操作系统
作者
Xin Liu
出处
期刊:Advances in multimedia [Hindawi Limited]
卷期号:2022: 1-8 被引量:1
标识
DOI:10.1155/2022/1284071
摘要

In recent years, the continuous innovation of technology has greatly contributed to the great changes in the media industry. The rapid development of big data and artificial intelligence technologies has enabled people to transition from the era of new media to the era of intelligent media. While the automation of news production brings broad prospects for intelligent media, it also accelerates the challenge of information explosion. Facing the massive amount of news and information, how to get the information users want quickly has become a big problem. In order to solve the audience’s information anxiety, personalized news recommendation system is born. In fact, news gate-keeping is an important part of news distribution. In the era of smart media, algorithmic distribution has impacted the original distribution mode and brought challenges to news gate-keeping. Personalized news recommendation is one of the gate-keeping methods of intelligent media. At the same time, with the rapid development of the Internet and information technology, today’s society has entered a period of information explosion. In terms of news, the rapid development of the Internet has made it easier to publish and read news on the Internet. As a result, online news has become an important way for people to get information. However, the previous news websites had a large amount of news information, but only collected and consolidated the news. As a result, users were left to passively receive news information from news sites and find the content they needed. Consequently, although the Internet has a huge amount of complicated news information, it is unable to meet the diversified and personalized news needs of users. In order to solve this issue, researchers are constantly looking for solutions. The emergence of recommendation system is an effective measure to cope with the above problem. The mainstream models of recommendation systems are collaborative filtering model and content-based recommendation model. However, there are two essential problems with collaborative filtering. The first one is the cold start problem, and the second one is that the preference matrix of item users becomes sparse as the number of items and users grows. These two issues can seriously affect the recommendation accuracy of the recommendation system. As a result, a hybrid recommendation system is built by fusing common recommendation algorithms. This system can not only deliver personalized information to different users, but also compensate the shortcomings of a single algorithm to a certain extent. To be specific, the newly constructed hybrid recommendation system can push news of interest to users according to their demographic attributes, behavioral attributes, and interests, thus expanding the scope of news communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXY完成签到,获得积分10
1秒前
xiuwen发布了新的文献求助10
1秒前
啦啦啦完成签到,获得积分10
1秒前
Umwandlung完成签到,获得积分10
3秒前
gorgeousgaga完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI5应助ipeakkka采纳,获得10
5秒前
852应助章家炜采纳,获得10
6秒前
Gauss应助张小汉采纳,获得30
8秒前
嘻嘻发布了新的文献求助10
8秒前
杰哥完成签到 ,获得积分10
9秒前
Ava应助赵小可可可可采纳,获得10
9秒前
科研通AI5应助kento采纳,获得30
10秒前
nkmenghan发布了新的文献求助10
11秒前
14秒前
redondo10完成签到,获得积分0
15秒前
16秒前
乔qiao发布了新的文献求助30
19秒前
WZ0904发布了新的文献求助10
20秒前
poegtam完成签到,获得积分10
21秒前
大胆盼兰发布了新的文献求助10
22秒前
wuyan204完成签到 ,获得积分10
23秒前
windcreator完成签到,获得积分10
23秒前
redondo5完成签到,获得积分0
23秒前
wangrswjx完成签到 ,获得积分10
23秒前
科研通AI5应助su采纳,获得10
23秒前
26秒前
28秒前
小二郎应助嘻嘻采纳,获得10
28秒前
yun完成签到 ,获得积分10
29秒前
29秒前
31秒前
健忘曼冬发布了新的文献求助10
31秒前
redondo完成签到,获得积分10
31秒前
momo完成签到,获得积分10
32秒前
希望天下0贩的0应助meng采纳,获得10
33秒前
龙歪歪发布了新的文献求助10
34秒前
34秒前
暮城完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849