Impact of Personalized Recommendation on Today’s News Communication through Algorithmic Mechanism in the New Media Era

互联网 计算机科学 新闻媒体 大数据 出版 新闻聚合器 万维网 互联网隐私 广告 业务 操作系统
作者
Xin Liu
出处
期刊:Advances in multimedia [Hindawi Publishing Corporation]
卷期号:2022: 1-8 被引量:1
标识
DOI:10.1155/2022/1284071
摘要

In recent years, the continuous innovation of technology has greatly contributed to the great changes in the media industry. The rapid development of big data and artificial intelligence technologies has enabled people to transition from the era of new media to the era of intelligent media. While the automation of news production brings broad prospects for intelligent media, it also accelerates the challenge of information explosion. Facing the massive amount of news and information, how to get the information users want quickly has become a big problem. In order to solve the audience’s information anxiety, personalized news recommendation system is born. In fact, news gate-keeping is an important part of news distribution. In the era of smart media, algorithmic distribution has impacted the original distribution mode and brought challenges to news gate-keeping. Personalized news recommendation is one of the gate-keeping methods of intelligent media. At the same time, with the rapid development of the Internet and information technology, today’s society has entered a period of information explosion. In terms of news, the rapid development of the Internet has made it easier to publish and read news on the Internet. As a result, online news has become an important way for people to get information. However, the previous news websites had a large amount of news information, but only collected and consolidated the news. As a result, users were left to passively receive news information from news sites and find the content they needed. Consequently, although the Internet has a huge amount of complicated news information, it is unable to meet the diversified and personalized news needs of users. In order to solve this issue, researchers are constantly looking for solutions. The emergence of recommendation system is an effective measure to cope with the above problem. The mainstream models of recommendation systems are collaborative filtering model and content-based recommendation model. However, there are two essential problems with collaborative filtering. The first one is the cold start problem, and the second one is that the preference matrix of item users becomes sparse as the number of items and users grows. These two issues can seriously affect the recommendation accuracy of the recommendation system. As a result, a hybrid recommendation system is built by fusing common recommendation algorithms. This system can not only deliver personalized information to different users, but also compensate the shortcomings of a single algorithm to a certain extent. To be specific, the newly constructed hybrid recommendation system can push news of interest to users according to their demographic attributes, behavioral attributes, and interests, thus expanding the scope of news communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的鱼发布了新的文献求助10
刚刚
hyh发布了新的文献求助10
1秒前
2秒前
wipmzxu完成签到,获得积分10
3秒前
要文献啊完成签到 ,获得积分10
7秒前
大方荟发布了新的文献求助10
8秒前
Graham完成签到,获得积分10
8秒前
9秒前
13秒前
丝垚完成签到 ,获得积分10
16秒前
苯基乙胺完成签到,获得积分10
18秒前
hyh完成签到,获得积分10
21秒前
21秒前
zhang完成签到 ,获得积分10
22秒前
sci123完成签到,获得积分20
23秒前
椰子狗完成签到,获得积分10
24秒前
嘻嘻叮完成签到,获得积分10
24秒前
26秒前
何博发布了新的文献求助10
28秒前
小蘑菇应助机灵水卉采纳,获得10
30秒前
波比不菜完成签到,获得积分10
31秒前
张helen125完成签到,获得积分20
31秒前
32秒前
cyndi发布了新的文献求助10
34秒前
执着的忆雪完成签到 ,获得积分10
38秒前
Jasmineyfz完成签到 ,获得积分10
40秒前
杀出个黎明举报求助违规成功
40秒前
lzx举报求助违规成功
40秒前
yx_cheng举报求助违规成功
40秒前
40秒前
muzi完成签到,获得积分10
41秒前
典雅宛秋完成签到 ,获得积分10
41秒前
41秒前
淡定完成签到,获得积分10
44秒前
健壮的冬瓜关注了科研通微信公众号
46秒前
flj7038完成签到,获得积分0
46秒前
淡定发布了新的文献求助10
48秒前
zhang完成签到,获得积分10
49秒前
lyx完成签到 ,获得积分10
50秒前
wanci应助Lee采纳,获得30
53秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268