已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of Personalized Recommendation on Today’s News Communication through Algorithmic Mechanism in the New Media Era

互联网 计算机科学 新闻媒体 大数据 出版 新闻聚合器 万维网 互联网隐私 广告 业务 操作系统
作者
Xin Liu
出处
期刊:Advances in multimedia [Hindawi Limited]
卷期号:2022: 1-8 被引量:1
标识
DOI:10.1155/2022/1284071
摘要

In recent years, the continuous innovation of technology has greatly contributed to the great changes in the media industry. The rapid development of big data and artificial intelligence technologies has enabled people to transition from the era of new media to the era of intelligent media. While the automation of news production brings broad prospects for intelligent media, it also accelerates the challenge of information explosion. Facing the massive amount of news and information, how to get the information users want quickly has become a big problem. In order to solve the audience’s information anxiety, personalized news recommendation system is born. In fact, news gate-keeping is an important part of news distribution. In the era of smart media, algorithmic distribution has impacted the original distribution mode and brought challenges to news gate-keeping. Personalized news recommendation is one of the gate-keeping methods of intelligent media. At the same time, with the rapid development of the Internet and information technology, today’s society has entered a period of information explosion. In terms of news, the rapid development of the Internet has made it easier to publish and read news on the Internet. As a result, online news has become an important way for people to get information. However, the previous news websites had a large amount of news information, but only collected and consolidated the news. As a result, users were left to passively receive news information from news sites and find the content they needed. Consequently, although the Internet has a huge amount of complicated news information, it is unable to meet the diversified and personalized news needs of users. In order to solve this issue, researchers are constantly looking for solutions. The emergence of recommendation system is an effective measure to cope with the above problem. The mainstream models of recommendation systems are collaborative filtering model and content-based recommendation model. However, there are two essential problems with collaborative filtering. The first one is the cold start problem, and the second one is that the preference matrix of item users becomes sparse as the number of items and users grows. These two issues can seriously affect the recommendation accuracy of the recommendation system. As a result, a hybrid recommendation system is built by fusing common recommendation algorithms. This system can not only deliver personalized information to different users, but also compensate the shortcomings of a single algorithm to a certain extent. To be specific, the newly constructed hybrid recommendation system can push news of interest to users according to their demographic attributes, behavioral attributes, and interests, thus expanding the scope of news communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wch666发布了新的文献求助10
5秒前
wenwj9完成签到,获得积分10
6秒前
调调单单发布了新的文献求助10
7秒前
14秒前
Amy完成签到,获得积分10
14秒前
18秒前
迷路的成风完成签到,获得积分10
19秒前
平淡诗柳完成签到 ,获得积分20
19秒前
20秒前
舒心凡完成签到,获得积分10
22秒前
Ava应助麦克采纳,获得10
22秒前
清风发布了新的文献求助10
23秒前
打打应助cai采纳,获得50
24秒前
罗罗罗发布了新的文献求助10
25秒前
wch666完成签到,获得积分10
26秒前
0717完成签到,获得积分10
27秒前
天宇南神完成签到 ,获得积分10
27秒前
Xx完成签到 ,获得积分10
29秒前
平淡诗柳发布了新的文献求助10
32秒前
梁凤炜完成签到,获得积分10
33秒前
CodeCraft应助清风采纳,获得10
33秒前
唐若冰完成签到,获得积分10
36秒前
七七完成签到 ,获得积分10
37秒前
万能图书馆应助Su采纳,获得10
49秒前
百宝驳回了Jasper应助
51秒前
eriphin完成签到,获得积分10
51秒前
打打应助渴望者采纳,获得10
54秒前
畅快的发箍完成签到,获得积分10
54秒前
姜姗完成签到 ,获得积分10
56秒前
lzy完成签到,获得积分10
58秒前
58秒前
59秒前
在巨人的肩膀上眺望远方完成签到,获得积分10
1分钟前
amanda完成签到,获得积分10
1分钟前
芒果完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276