已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of Personalized Recommendation on Today’s News Communication through Algorithmic Mechanism in the New Media Era

互联网 计算机科学 新闻媒体 大数据 出版 新闻聚合器 万维网 互联网隐私 广告 业务 操作系统
作者
Xin Liu
出处
期刊:Advances in multimedia [Hindawi Limited]
卷期号:2022: 1-8 被引量:1
标识
DOI:10.1155/2022/1284071
摘要

In recent years, the continuous innovation of technology has greatly contributed to the great changes in the media industry. The rapid development of big data and artificial intelligence technologies has enabled people to transition from the era of new media to the era of intelligent media. While the automation of news production brings broad prospects for intelligent media, it also accelerates the challenge of information explosion. Facing the massive amount of news and information, how to get the information users want quickly has become a big problem. In order to solve the audience’s information anxiety, personalized news recommendation system is born. In fact, news gate-keeping is an important part of news distribution. In the era of smart media, algorithmic distribution has impacted the original distribution mode and brought challenges to news gate-keeping. Personalized news recommendation is one of the gate-keeping methods of intelligent media. At the same time, with the rapid development of the Internet and information technology, today’s society has entered a period of information explosion. In terms of news, the rapid development of the Internet has made it easier to publish and read news on the Internet. As a result, online news has become an important way for people to get information. However, the previous news websites had a large amount of news information, but only collected and consolidated the news. As a result, users were left to passively receive news information from news sites and find the content they needed. Consequently, although the Internet has a huge amount of complicated news information, it is unable to meet the diversified and personalized news needs of users. In order to solve this issue, researchers are constantly looking for solutions. The emergence of recommendation system is an effective measure to cope with the above problem. The mainstream models of recommendation systems are collaborative filtering model and content-based recommendation model. However, there are two essential problems with collaborative filtering. The first one is the cold start problem, and the second one is that the preference matrix of item users becomes sparse as the number of items and users grows. These two issues can seriously affect the recommendation accuracy of the recommendation system. As a result, a hybrid recommendation system is built by fusing common recommendation algorithms. This system can not only deliver personalized information to different users, but also compensate the shortcomings of a single algorithm to a certain extent. To be specific, the newly constructed hybrid recommendation system can push news of interest to users according to their demographic attributes, behavioral attributes, and interests, thus expanding the scope of news communication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助lingyan采纳,获得10
1秒前
自信萃完成签到 ,获得积分10
1秒前
林凯菲完成签到,获得积分10
2秒前
2秒前
尹沐完成签到 ,获得积分10
4秒前
乐乐应助卷卷采纳,获得30
4秒前
4秒前
6秒前
映泧完成签到,获得积分10
6秒前
qing发布了新的文献求助10
6秒前
prrrratt发布了新的文献求助10
7秒前
刺五加完成签到 ,获得积分10
8秒前
Delight完成签到 ,获得积分0
9秒前
9秒前
零四零零柒贰完成签到 ,获得积分10
10秒前
王七七发布了新的文献求助10
10秒前
10秒前
624发布了新的文献求助30
10秒前
科研通AI6应助猫猫猫采纳,获得10
11秒前
11秒前
13秒前
无语伦比完成签到 ,获得积分10
13秒前
14秒前
candy完成签到 ,获得积分10
14秒前
哈哈哈发布了新的文献求助10
14秒前
15秒前
ceeray23发布了新的文献求助20
15秒前
陈博儿发布了新的文献求助30
15秒前
香蕉觅云应助于鱼采纳,获得10
16秒前
18秒前
所所应助大方雁露采纳,获得10
19秒前
何劲松发布了新的文献求助10
20秒前
郝誉发布了新的文献求助10
21秒前
左西完成签到 ,获得积分10
23秒前
何劲松完成签到,获得积分10
27秒前
慕青应助于鱼采纳,获得10
28秒前
听话的夏旋完成签到,获得积分10
29秒前
务实觅松完成签到 ,获得积分10
30秒前
ling发布了新的文献求助10
30秒前
czcmh完成签到 ,获得积分0
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571