“I feel like I am in that place and I would like to see more”: Aesthetic and embodiment components of tourist destination image.

旅游 目的地图像 美学 广告 图像(数学) 艺术 视觉艺术 业务 目的地 计算机科学 计算机视觉 历史 考古
作者
Sonia Malvica,Letizia Palumbo,Valentina Cazzato
出处
期刊:Psychology of Aesthetics, Creativity, and the Arts [American Psychological Association]
被引量:5
标识
DOI:10.1037/aca0000509
摘要

Photographs of places are cognitive sources that provide the observer with a first, essential impression of a potential tourist destination, before the observer visits that place.Recent evidence suggests that aesthetic qualities of a tourist destination may affect tourists' experience and satisfaction, contributing to their loyalty towards a destination and intention to return.Drawing upon the literature on sensorimotor processes of aesthetic experience of arts, here, we investigated whether embodiment and aesthetic qualities of landscape photos might play a role in people' aesthetic preference and willingness to visit a tourist destination.One-hundred twenty-one participants (Mage = 22.17, SD = 6.25) completed an online survey, which asked to evaluate a series of landscapes according to subjective ratings of presence, exploration and completion, that is the intention to explore beyond the represented place (embodiment dimensions), as well as of symmetry.Furthermore, participants rated how much they liked each destination (Liking) and how much they would like to visit that place (Tourist judgement).Convolutional neural networks (CNN) of image features (Symmetry, Variance and Self-similarity) were also analysed to rule out the effects of these features on the two types of judgement.Results showed that embodiment components predicted both Liking and Tourist judgements.In contrast, neither subjective Symmetry nor CNN measures predicted any of the two Liking and Tourist judgements.Overall, our findings support a novel theoretical framework of tourist aesthetic judgement, whereby sensorimotor mechanisms might play a role in tourist destination choice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MM11111完成签到,获得积分10
1秒前
怡然曼彤发布了新的文献求助10
2秒前
传奇3应助Cc采纳,获得10
3秒前
加贝完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
5秒前
望xun发布了新的文献求助10
5秒前
7秒前
lewis17完成签到,获得积分10
10秒前
phw2333应助冷酷绝悟采纳,获得20
10秒前
SUO发布了新的文献求助150
10秒前
搜集达人应助爱吃鲷鱼烧采纳,获得10
11秒前
刺猬完成签到,获得积分10
13秒前
忆前尘发布了新的文献求助10
13秒前
Jasper应助Y123采纳,获得30
14秒前
SciGPT应助Y123采纳,获得200
14秒前
15秒前
Jasper应助勤劳的星月采纳,获得10
15秒前
第七个太阳完成签到,获得积分10
15秒前
16秒前
17秒前
Miller应助白智妍采纳,获得20
17秒前
雨相所至应助卡卡滴滴采纳,获得10
19秒前
lalala应助卡卡滴滴采纳,获得10
19秒前
man完成签到 ,获得积分10
19秒前
stella完成签到,获得积分10
20秒前
20秒前
lily336699完成签到,获得积分10
23秒前
粥喝不喝发布了新的文献求助10
23秒前
23秒前
乐乐应助RYAN采纳,获得10
23秒前
CHC发布了新的文献求助10
24秒前
亚当发布了新的文献求助10
25秒前
lzj001983完成签到,获得积分10
25秒前
洛小枫完成签到,获得积分10
26秒前
lily336699发布了新的文献求助10
27秒前
27秒前
Lucas应助小杜小杜采纳,获得10
28秒前
30秒前
专一的书兰完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Colloidal Synthesis of Plasmonic Nanometals 500
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587