Adaptively Customizing Activation Functions for Various Layers

计算机科学 乙状窦函数 激活函数 趋同(经济学) 人工神经网络 帕斯卡(单位) 一般化 非线性系统 人工智能 机器学习 算法 数学 数学分析 物理 量子力学 经济 程序设计语言 经济增长
作者
Haigen Hu,Aizhu Liu,Guan Qin,Hanwang Qian,Xiaoxin Li,Shengyong Chen,Qianwei Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 6096-6107 被引量:6
标识
DOI:10.1109/tnnls.2021.3133263
摘要

To enhance the nonlinearity of neural networks and increase their mapping abilities between the inputs and response variables, activation functions play a crucial role to model more complex relationships and patterns in the data. In this work, a novel methodology is proposed to adaptively customize activation functions only by adding very few parameters to the traditional activation functions such as Sigmoid, Tanh, and rectified linear unit (ReLU). To verify the effectiveness of the proposed methodology, some theoretical and experimental analysis on accelerating the convergence and improving the performance is presented, and a series of experiments are conducted based on various network models (such as AlexNet, VggNet, GoogLeNet, ResNet and DenseNet), and various datasets (such as CIFAR10, CIFAR100, miniImageNet, PASCAL VOC, and COCO). To further verify the validity and suitability in various optimization strategies and usage scenarios, some comparison experiments are also implemented among different optimization strategies (such as SGD, Momentum, AdaGrad, AdaDelta, and ADAM) and different recognition tasks such as classification and detection. The results show that the proposed methodology is very simple but with significant performance in convergence speed, precision, and generalization, and it can surpass other popular methods such as ReLU and adaptive functions such as Swish in almost all experiments in terms of overall performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助kingwill采纳,获得30
刚刚
刚刚
1秒前
小蘑菇应助123321采纳,获得10
1秒前
喵总完成签到,获得积分10
2秒前
3秒前
勤恳曼卉发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
andrele发布了新的文献求助10
8秒前
8秒前
匆匆发布了新的文献求助10
9秒前
君兰发布了新的文献求助10
9秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
caicai发布了新的文献求助10
10秒前
王王应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得30
11秒前
Hello应助科研通管家采纳,获得30
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
王王应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
风清扬应助科研通管家采纳,获得20
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786804
求助须知:如何正确求助?哪些是违规求助? 5695899
关于积分的说明 15470615
捐赠科研通 4915507
什么是DOI,文献DOI怎么找? 2645784
邀请新用户注册赠送积分活动 1593495
关于科研通互助平台的介绍 1547840