Adaptively Customizing Activation Functions for Various Layers

计算机科学 乙状窦函数 激活函数 趋同(经济学) 人工神经网络 帕斯卡(单位) 一般化 非线性系统 人工智能 机器学习 算法 数学 数学分析 物理 量子力学 经济 程序设计语言 经济增长
作者
Haigen Hu,Aizhu Liu,Guan Qin,Hanwang Qian,Xiaoxin Li,Shengyong Chen,Qianwei Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 6096-6107 被引量:6
标识
DOI:10.1109/tnnls.2021.3133263
摘要

To enhance the nonlinearity of neural networks and increase their mapping abilities between the inputs and response variables, activation functions play a crucial role to model more complex relationships and patterns in the data. In this work, a novel methodology is proposed to adaptively customize activation functions only by adding very few parameters to the traditional activation functions such as Sigmoid, Tanh, and rectified linear unit (ReLU). To verify the effectiveness of the proposed methodology, some theoretical and experimental analysis on accelerating the convergence and improving the performance is presented, and a series of experiments are conducted based on various network models (such as AlexNet, VggNet, GoogLeNet, ResNet and DenseNet), and various datasets (such as CIFAR10, CIFAR100, miniImageNet, PASCAL VOC, and COCO). To further verify the validity and suitability in various optimization strategies and usage scenarios, some comparison experiments are also implemented among different optimization strategies (such as SGD, Momentum, AdaGrad, AdaDelta, and ADAM) and different recognition tasks such as classification and detection. The results show that the proposed methodology is very simple but with significant performance in convergence speed, precision, and generalization, and it can surpass other popular methods such as ReLU and adaptive functions such as Swish in almost all experiments in terms of overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Much发布了新的文献求助10
1秒前
NgiNgu完成签到 ,获得积分10
2秒前
4秒前
4秒前
香蕉觅云应助狂野傲南采纳,获得10
5秒前
6秒前
6秒前
6秒前
8秒前
能干哈密瓜完成签到 ,获得积分10
8秒前
9秒前
捏捏猫猫发布了新的文献求助10
9秒前
能干的茗发布了新的文献求助10
9秒前
逢考必过发布了新的文献求助10
9秒前
9秒前
杨没差发布了新的文献求助10
10秒前
戴维发布了新的文献求助10
10秒前
华仔应助张正采纳,获得10
11秒前
整齐的便当完成签到,获得积分20
11秒前
12秒前
陈婷婷发布了新的文献求助10
13秒前
15秒前
17秒前
感动的薄荷完成签到,获得积分20
17秒前
清水小镇发布了新的文献求助10
18秒前
21秒前
科研通AI5应助moumou采纳,获得10
22秒前
23秒前
xwz2025发布了新的文献求助10
24秒前
温婉的鸿煊完成签到,获得积分10
25秒前
大个应助张正采纳,获得10
26秒前
26秒前
26秒前
英俊的铭应助attitude采纳,获得10
26秒前
孤独的寒烟完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
29秒前
Cc大熊发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498