纳米-
蒸发器
蒸发
材料科学
纳米颗粒
化学工程
光热治疗
多孔性
图层(电子)
热的
纳米技术
复合材料
机械工程
工程类
气象学
热交换器
物理
作者
Ling Li,李浩 Li Hao,Lizheng Meng,Beibei Wang,Jinbo Bai,Gang Wang,Shenghua Ma
标识
DOI:10.1016/j.seta.2022.102074
摘要
Solar-driven interface evaporation technology provides a sustainable green method for the acquisition of freshwater resources. In this article, a hydrogel of a three-dimensional porous structure has been synthesized for solar steam generation. Ag nanoparticles are used as a photothermal material. Given the long-term utilization of Ag nanoparticles, they have been coated with a SiO2 layer. Moreover, SiO2 can act as a “reduced reflection” layer that can minimize light reflection on a single Ag nanoparticle, and enhance the nanoparticles’ absorbing ability of optical waves. Furthermore, the performance of the evaporator is significantly improved by the addition of cuttlefish powder material in the hydrogel. Specifically, under 1 KW m−2, the surface temperature of the evaporator reached 41 ℃, the steam generation rate was 1.78 (kg m−2h−1), and the solar thermal conversion efficiency is 94 %. Moreover, when the evaporator is used in heavy metal sorption, the resulting evaporated water meets international drinking water criteria. After photothermal evaporation, the ion concentrations of Cu, Mn and Cd decreased from 1000, 100 and 20 mg L−1 to 0.021, 0.017 and 0.04 mg L−1 respectively. This study provides a feasible idea for the practical application of photothermal evaporator.
科研通智能强力驱动
Strongly Powered by AbleSci AI