亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rethinking Graph Convolutional Networks in Knowledge Graph Completion

计算机科学 图形 理论计算机科学 知识图 嵌入 人工智能
作者
Zhanqiu Zhang,Jie Wang,Jieping Ye,Feng Wu
标识
DOI:10.1145/3485447.3511923
摘要

Graph convolutional networks (GCNs)—which are effective in modeling graph structures—have been increasingly popular in knowledge graph completion (KGC). GCN-based KGC models first use GCNs to generate expressive entity representations and then use knowledge graph embedding (KGE) models to capture the interactions among entities and relations. However, many GCN-based KGC models fail to outperform state-of-the-art KGE models though introducing additional computational complexity. This phenomenon motivates us to explore the real effect of GCNs in KGC. Therefore, in this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC. Surprisingly, we observe from experiments that the graph structure modeling in GCNs does not have a significant impact on the performance of KGC models, which is in contrast to the common belief. Instead, the transformations for entity representations are responsible for the performance improvements. Based on the observation, we propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings. Experiments demonstrate that LTE-KGE models lead to similar performance improvements with GCN-based KGC methods, while being more computationally efficient. These results suggest that existing GCNs are unnecessary for KGC, and novel GCN-based KGC models should count on more ablation studies to validate their effectiveness. The code of all the experiments is available on GitHub at https://github.com/MIRALab-USTC/GCN4KGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
拓跋雨梅完成签到 ,获得积分0
13秒前
mjf111应助DrleedsG采纳,获得10
26秒前
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
45秒前
1分钟前
1分钟前
Lily完成签到,获得积分10
2分钟前
clairevox完成签到,获得积分10
2分钟前
2分钟前
clairevox发布了新的文献求助10
2分钟前
2分钟前
勤恳依霜发布了新的文献求助10
2分钟前
jfc完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
4分钟前
传奇3应助XIN采纳,获得10
4分钟前
4分钟前
4分钟前
XIN发布了新的文献求助10
4分钟前
mjf111发布了新的文献求助10
4分钟前
mjf111完成签到,获得积分10
5分钟前
5分钟前
xz完成签到 ,获得积分10
5分钟前
XIN发布了新的文献求助10
5分钟前
XIN完成签到,获得积分10
5分钟前
6分钟前
qiuxuan100发布了新的文献求助10
6分钟前
8分钟前
8分钟前
ding应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
Lucas应助强健的柚子采纳,获得10
8分钟前
9分钟前
9分钟前
10分钟前
大脸猫完成签到 ,获得积分10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662474
邀请新用户注册赠送积分活动 647005