Rethinking Graph Convolutional Networks in Knowledge Graph Completion

计算机科学 图形 理论计算机科学 知识图 嵌入 人工智能
作者
Zhanqiu Zhang,Jie Wang,Jieping Ye,Feng Wu
标识
DOI:10.1145/3485447.3511923
摘要

Graph convolutional networks (GCNs)—which are effective in modeling graph structures—have been increasingly popular in knowledge graph completion (KGC). GCN-based KGC models first use GCNs to generate expressive entity representations and then use knowledge graph embedding (KGE) models to capture the interactions among entities and relations. However, many GCN-based KGC models fail to outperform state-of-the-art KGE models though introducing additional computational complexity. This phenomenon motivates us to explore the real effect of GCNs in KGC. Therefore, in this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC. Surprisingly, we observe from experiments that the graph structure modeling in GCNs does not have a significant impact on the performance of KGC models, which is in contrast to the common belief. Instead, the transformations for entity representations are responsible for the performance improvements. Based on the observation, we propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings. Experiments demonstrate that LTE-KGE models lead to similar performance improvements with GCN-based KGC methods, while being more computationally efficient. These results suggest that existing GCNs are unnecessary for KGC, and novel GCN-based KGC models should count on more ablation studies to validate their effectiveness. The code of all the experiments is available on GitHub at https://github.com/MIRALab-USTC/GCN4KGC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoqf发布了新的文献求助10
刚刚
MOOOO完成签到,获得积分10
刚刚
xin发布了新的文献求助10
刚刚
勤劳亦瑶完成签到,获得积分20
2秒前
斯文败类应助兴奋的万声采纳,获得30
2秒前
chanhow完成签到,获得积分10
2秒前
rainsy发布了新的文献求助10
3秒前
桐桐应助于沁冉采纳,获得30
3秒前
SSS完成签到,获得积分20
4秒前
4秒前
李爱国应助Lucy采纳,获得10
5秒前
一颗葡萄完成签到 ,获得积分10
6秒前
chanhow发布了新的文献求助10
6秒前
7秒前
7秒前
冬日空虚应助小马哥采纳,获得10
8秒前
小二郎应助勤劳亦瑶采纳,获得10
9秒前
田T发布了新的文献求助10
9秒前
慌慌完成签到 ,获得积分10
10秒前
MOOOO发布了新的文献求助10
10秒前
13秒前
SSS发布了新的文献求助10
13秒前
13秒前
俏皮不可完成签到,获得积分10
13秒前
13秒前
残剑月应助香香采纳,获得10
15秒前
薯条发布了新的文献求助10
15秒前
fsznc完成签到 ,获得积分0
16秒前
量子星尘发布了新的文献求助10
16秒前
清风在侧发布了新的文献求助10
17秒前
17秒前
俏皮不可发布了新的文献求助10
17秒前
陈民完成签到,获得积分20
17秒前
Jasper应助加油kiki采纳,获得10
18秒前
19秒前
小马甲应助自由的笑容采纳,获得10
19秒前
20秒前
uone完成签到,获得积分10
21秒前
21秒前
Lucas应助曈梦采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297