Rethinking Graph Convolutional Networks in Knowledge Graph Completion

计算机科学 图形 理论计算机科学 知识图 嵌入 人工智能
作者
Zhanqiu Zhang,Jie Wang,Jieping Ye,Feng Wu
标识
DOI:10.1145/3485447.3511923
摘要

Graph convolutional networks (GCNs)—which are effective in modeling graph structures—have been increasingly popular in knowledge graph completion (KGC). GCN-based KGC models first use GCNs to generate expressive entity representations and then use knowledge graph embedding (KGE) models to capture the interactions among entities and relations. However, many GCN-based KGC models fail to outperform state-of-the-art KGE models though introducing additional computational complexity. This phenomenon motivates us to explore the real effect of GCNs in KGC. Therefore, in this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC. Surprisingly, we observe from experiments that the graph structure modeling in GCNs does not have a significant impact on the performance of KGC models, which is in contrast to the common belief. Instead, the transformations for entity representations are responsible for the performance improvements. Based on the observation, we propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings. Experiments demonstrate that LTE-KGE models lead to similar performance improvements with GCN-based KGC methods, while being more computationally efficient. These results suggest that existing GCNs are unnecessary for KGC, and novel GCN-based KGC models should count on more ablation studies to validate their effectiveness. The code of all the experiments is available on GitHub at https://github.com/MIRALab-USTC/GCN4KGC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助袁小破采纳,获得10
刚刚
桐桐应助酷炫贞采纳,获得30
1秒前
husi发布了新的文献求助10
1秒前
1秒前
充电宝应助高山和鸟采纳,获得10
1秒前
胡子完成签到,获得积分20
2秒前
Xiaoxiao完成签到,获得积分10
2秒前
吴悦涵完成签到 ,获得积分10
2秒前
yu发布了新的文献求助10
3秒前
斯文败类应助KINGMach采纳,获得10
3秒前
alier发布了新的文献求助30
3秒前
3秒前
酷波er应助小吴采纳,获得10
3秒前
4秒前
4秒前
钼yanghua发布了新的文献求助10
5秒前
刘栋完成签到,获得积分10
5秒前
5秒前
干鞅发布了新的文献求助10
6秒前
蒋蒋蒋发布了新的文献求助10
6秒前
化雪彼岸发布了新的文献求助10
6秒前
无花果应助薛晓博采纳,获得10
6秒前
Cker完成签到,获得积分10
7秒前
蜡笔小新发布了新的文献求助10
7秒前
klony完成签到,获得积分10
7秒前
阿达完成签到,获得积分10
8秒前
玄武岩完成签到,获得积分10
8秒前
8秒前
斯文败类应助瓢瓢采纳,获得10
8秒前
9秒前
L丶完成签到,获得积分10
9秒前
An完成签到,获得积分10
10秒前
小二郎应助学术小白采纳,获得30
10秒前
芽芽豆发布了新的文献求助10
10秒前
搜集达人应助qing采纳,获得10
11秒前
我的小伙伴应助胡子采纳,获得50
11秒前
桐桐应助mo采纳,获得10
11秒前
zxw完成签到,获得积分10
11秒前
chenxiaolei发布了新的文献求助10
11秒前
mumu发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513050
求助须知:如何正确求助?哪些是违规求助? 4607382
关于积分的说明 14504952
捐赠科研通 4542911
什么是DOI,文献DOI怎么找? 2489237
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443307