Rethinking Graph Convolutional Networks in Knowledge Graph Completion

计算机科学 图形 理论计算机科学 知识图 嵌入 人工智能
作者
Zhanqiu Zhang,Jie Wang,Jieping Ye,Feng Wu
标识
DOI:10.1145/3485447.3511923
摘要

Graph convolutional networks (GCNs)—which are effective in modeling graph structures—have been increasingly popular in knowledge graph completion (KGC). GCN-based KGC models first use GCNs to generate expressive entity representations and then use knowledge graph embedding (KGE) models to capture the interactions among entities and relations. However, many GCN-based KGC models fail to outperform state-of-the-art KGE models though introducing additional computational complexity. This phenomenon motivates us to explore the real effect of GCNs in KGC. Therefore, in this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC. Surprisingly, we observe from experiments that the graph structure modeling in GCNs does not have a significant impact on the performance of KGC models, which is in contrast to the common belief. Instead, the transformations for entity representations are responsible for the performance improvements. Based on the observation, we propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings. Experiments demonstrate that LTE-KGE models lead to similar performance improvements with GCN-based KGC methods, while being more computationally efficient. These results suggest that existing GCNs are unnecessary for KGC, and novel GCN-based KGC models should count on more ablation studies to validate their effectiveness. The code of all the experiments is available on GitHub at https://github.com/MIRALab-USTC/GCN4KGC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助民谣采纳,获得10
刚刚
刚刚
玄风发布了新的文献求助10
刚刚
乐乐应助Ira1005采纳,获得10
刚刚
直率的鹭洋完成签到,获得积分10
刚刚
zy完成签到,获得积分10
1秒前
1秒前
共享精神应助科研小白采纳,获得10
1秒前
杪春完成签到 ,获得积分10
1秒前
5555发布了新的文献求助10
1秒前
2秒前
2秒前
天明完成签到,获得积分10
2秒前
三七发布了新的文献求助10
3秒前
3秒前
3秒前
wanci应助泽锦臻采纳,获得10
3秒前
茗泠发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
华仔应助血小板采纳,获得20
5秒前
123完成签到 ,获得积分10
5秒前
阿里嘎多发布了新的文献求助10
5秒前
5秒前
七田皿发布了新的文献求助10
5秒前
5秒前
xhyz发布了新的文献求助10
6秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
研友_8DAv0L发布了新的文献求助10
7秒前
夜雨完成签到,获得积分10
8秒前
科目三应助Jeremy采纳,获得10
8秒前
8秒前
hyy发布了新的文献求助10
9秒前
星星海完成签到,获得积分10
9秒前
柒七完成签到,获得积分10
9秒前
科研牛马发布了新的文献求助30
10秒前
可乐发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594