Rethinking Graph Convolutional Networks in Knowledge Graph Completion

计算机科学 图形 理论计算机科学 知识图 嵌入 人工智能
作者
Zhanqiu Zhang,Jie Wang,Jieping Ye,Feng Wu
标识
DOI:10.1145/3485447.3511923
摘要

Graph convolutional networks (GCNs)—which are effective in modeling graph structures—have been increasingly popular in knowledge graph completion (KGC). GCN-based KGC models first use GCNs to generate expressive entity representations and then use knowledge graph embedding (KGE) models to capture the interactions among entities and relations. However, many GCN-based KGC models fail to outperform state-of-the-art KGE models though introducing additional computational complexity. This phenomenon motivates us to explore the real effect of GCNs in KGC. Therefore, in this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC. Surprisingly, we observe from experiments that the graph structure modeling in GCNs does not have a significant impact on the performance of KGC models, which is in contrast to the common belief. Instead, the transformations for entity representations are responsible for the performance improvements. Based on the observation, we propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings. Experiments demonstrate that LTE-KGE models lead to similar performance improvements with GCN-based KGC methods, while being more computationally efficient. These results suggest that existing GCNs are unnecessary for KGC, and novel GCN-based KGC models should count on more ablation studies to validate their effectiveness. The code of all the experiments is available on GitHub at https://github.com/MIRALab-USTC/GCN4KGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wch完成签到,获得积分20
刚刚
科狸完成签到,获得积分10
刚刚
拼搏飞柏发布了新的文献求助10
刚刚
996755发布了新的文献求助10
刚刚
刚刚
刚刚
thuuu完成签到,获得积分10
刚刚
1秒前
1秒前
思源应助拼搏的香菇采纳,获得10
1秒前
科研通AI2S应助石晶晶采纳,获得10
3秒前
伶俐冷卉发布了新的文献求助10
3秒前
重要代丝发布了新的文献求助10
3秒前
3秒前
cindy发布了新的文献求助10
4秒前
yu完成签到,获得积分10
4秒前
猪猪hero应助年华采纳,获得10
4秒前
搜集达人应助sunshine采纳,获得10
5秒前
zhou完成签到,获得积分10
5秒前
科研通AI2S应助奥德修斯凡采纳,获得10
5秒前
linmo发布了新的文献求助10
5秒前
6秒前
6秒前
香蕉觅云应助aaaaarfv采纳,获得10
7秒前
7秒前
8秒前
糖炒栗子发布了新的文献求助10
9秒前
9秒前
10秒前
进击的然完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
精明翠曼发布了新的文献求助10
12秒前
CipherSage应助古月采纳,获得10
12秒前
科研通AI2S应助Jing采纳,获得10
12秒前
bbb发布了新的文献求助10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771