XBP1型
脂肪性肝炎
脂肪肝
基因剔除小鼠
内分泌学
化学
脂肪变性
内科学
肝细胞
促炎细胞因子
蛋氨酸
生物
炎症
医学
生物化学
基因
受体
RNA剪接
体外
氨基酸
疾病
核糖核酸
作者
Qi Wang,Haoming Zhou,Qingfa Bu,Song Wei,Lei Li,Jinren Zhou,Shun Zhou,Wantong Su,Mu Liu,Zheng Liu,Mingming Wang,Ling Lü
标识
DOI:10.1016/j.jhep.2022.02.031
摘要
•XBP1 expression is increased in the livers of patients with NASH.•XBP1 accelerates NASH development by increasing lipogenesis in hepatocytes.•Macrophage XBP1 induces experimental steatohepatitis.•Xbp1 deleted macrophages inhibit hepatocyte steatosis and HSC activation.•Pharmacological XBP1 inhibitors attenuate steatohepatitis in mice. Background & AimsNon-alcoholic steatohepatitis (NASH) is associated with the dysregulation of lipid metabolism and hepatic inflammation, though the underlying mechanisms remain unclear. We aimed to investigate the role of X-box binding protein-1 (XBP1) in the progression of NASH.MethodsHuman liver tissues obtained from patients with NASH and controls were used to assess XBP1 expression. NASH models were developed in hepatocyte-specific Xbp1 knockout (Xbp1ΔHep), macrophage-specific Xbp1 knockout (Xbp1ΔMf), macrophage-specific Nlrp3 knockout, and wild-type (Xbp1FL/FL or Nlrp3FL/FL) mice fed with a high-fat diet for 26 weeks or a methionine/choline-deficient diet for 6 weeks.ResultsThe expression of XBP1 was significantly upregulated in liver samples from patients with NASH. Hepatocyte-specific Xbp1 deficiency inhibited the development of steatohepatitis in mice fed the high-fat or methionine/choline-deficient diets. Meanwhile, macrophage-specific Xbp1 knockout mice developed less severe steatohepatitis and fibrosis than wild-type Xbp1FL/FL mice in response to the high-fat or methionine/choline-deficient diets. Macrophage-specific Xbp1 knockout mice showed M2 anti-inflammatory polarization. Xbp1-deleted macrophages reduced steatohepatitis by decreasing the expression of NLRP3 and secretion of pro-inflammatory cytokines, which mediate M2 macrophage polarization in macrophage-specific Xbp1 knockout mice. Steatohepatitis was less severe in macrophage-specific Nlrp3 knockout mice than in wild-type Nlrp3FL/FL mice. Xbp1-deleted macrophages prevented hepatic stellate cell activation by decreasing expression of TGF-β1. Less fibrotic changes were observed in macrophage-specific Xbp1 knockout mice than in wild-type Xbp1FL/FL mice. Inhibition of XBP1 suppressed the development of NASH.ConclusionXBP1 regulates the development of NASH. XBP1 inhibitors protect against steatohepatitis. Thus, XBP1 is a potential target for the treatment of NASH.Lay summaryXBP1 is a transcription factor that is upregulated in liver tissues of patients with non-alcoholic steatohepatitis (NASH). Conditional knockout of Xbp1 in hepatocytes resulted in decreased lipid accumulation in mice, while genetic deletion of Xbp1 in macrophages ameliorated nutritional steatohepatitis and fibrosis in mice. Pharmacological inhibition of XBP1 protects against steatohepatitis and fibrosis, highlighting a promising therapeutic strategy for NASH. Non-alcoholic steatohepatitis (NASH) is associated with the dysregulation of lipid metabolism and hepatic inflammation, though the underlying mechanisms remain unclear. We aimed to investigate the role of X-box binding protein-1 (XBP1) in the progression of NASH. Human liver tissues obtained from patients with NASH and controls were used to assess XBP1 expression. NASH models were developed in hepatocyte-specific Xbp1 knockout (Xbp1ΔHep), macrophage-specific Xbp1 knockout (Xbp1ΔMf), macrophage-specific Nlrp3 knockout, and wild-type (Xbp1FL/FL or Nlrp3FL/FL) mice fed with a high-fat diet for 26 weeks or a methionine/choline-deficient diet for 6 weeks. The expression of XBP1 was significantly upregulated in liver samples from patients with NASH. Hepatocyte-specific Xbp1 deficiency inhibited the development of steatohepatitis in mice fed the high-fat or methionine/choline-deficient diets. Meanwhile, macrophage-specific Xbp1 knockout mice developed less severe steatohepatitis and fibrosis than wild-type Xbp1FL/FL mice in response to the high-fat or methionine/choline-deficient diets. Macrophage-specific Xbp1 knockout mice showed M2 anti-inflammatory polarization. Xbp1-deleted macrophages reduced steatohepatitis by decreasing the expression of NLRP3 and secretion of pro-inflammatory cytokines, which mediate M2 macrophage polarization in macrophage-specific Xbp1 knockout mice. Steatohepatitis was less severe in macrophage-specific Nlrp3 knockout mice than in wild-type Nlrp3FL/FL mice. Xbp1-deleted macrophages prevented hepatic stellate cell activation by decreasing expression of TGF-β1. Less fibrotic changes were observed in macrophage-specific Xbp1 knockout mice than in wild-type Xbp1FL/FL mice. Inhibition of XBP1 suppressed the development of NASH. XBP1 regulates the development of NASH. XBP1 inhibitors protect against steatohepatitis. Thus, XBP1 is a potential target for the treatment of NASH.
科研通智能强力驱动
Strongly Powered by AbleSci AI